
TABLE I.  CLONE DETECTION TOOLS AND METRICS 

Clone 
metric 

Tool Configuration 

c1 CCFinderX # of minimum tokens is 50 

c2 CCFinderX # of minimum tokens is 100 
c3 Simian # of minimum LOC is 6 

c4 Simian # of minimum LOC is 9, and ignore identifiers 

c5 CPD # of minimum tokens is 100 
c6 CPD # of minimum tokens is 200, and ignore literals 

c7 NiCad3 block clone, and type 2 (renamed) clone 

c8 NiCad3 
function clone, and type 3-2c (near-miss 
renamed consistently) clone 
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Abstract—We have investigated through several experiments 

the differences in the fault-prone module prediction accuracy 

caused by the differences in the constituent code clone metrics of 

the prediction model. In the previous studies, they use one or 

more code clone metrics as independent variables to build an 

accurate prediction model. While they often use the clone 

detection method proposed by Kamiya et al. to calculate these 

metrics, the effect of the detection method on the prediction 

accuracy is not clear. In the experiment, we built prediction 

models using a dataset collected from an open source software 

project. The result suggests that the prediction accuracy is 

improved, when clone metrics derived from the various clone 

detection tool are used. 
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I. INTRODUCTION 

To enhance software reliability, it is important to find and 
remove faults in the testing phase. Predicting fault-prone 
modules is recognized to be a promising approach to finding 
software faults, and many fault-prone module prediction 
models are proposed in the software engineering field. When 
building the prediction model, selecting proper independent 
variables is important to enhance prediction accuracy. 

When selecting independent variables of a fault-prone 
prediction model, we investigate each software metric such as 
a complexity metric of the source code from a viewpoint of the 
relevance to software faults. Existing studies suggested that 
code clone related metrics are some of the effective alternatives 
[4], and hence using the clone metrics (e.g., the ratio of the 
lines of duplicated code per the lines of code) is expected to 
enhance the performance of fault prediction models. In the 
literature [2], they tried to use clone metrics as independent 
variables of the prediction model, to enhance the performance 
of the model.   

Many code clone detection methods have been proposed 
[4], since code clones affect software maintainability. Each 
resulting set of code clones differs from another if we use 
different detection methods or if we use different 
configurations of one detection method [5]. Relevant code 
clone metric also differs from one to another. For instance, if 
we set a smaller value to the ‘minimum size of detected clone’ 
parameter, we will get a larger value of the ‘ratio of clones to 
lines of code’ metric because of the increasing number of 

detected clones. Since we focus on the effects caused by 
different clone metrics used in a fault-prone module prediction 
model, we will take the differences in method configurations to 
be same as the differences in detection methods. 

Existing studies use clone metrics [2] calculated using the 
code clones resulting from the detection method proposed by 
Kamiya et al. [3]. On the other hand, changes in the prediction 
accuracy are not clear if we alter the prediction model so that it 
uses another method for code clone detection. Also, the 
changes in prediction accuracy is not clear when the model 
uses various clone metrics which is derived from different 
detection methods simultaneously. In this paper, we assess the 
differences in the prediction power through several 
experiments in which we use the model comprised of various 
clone metrics calculated from various clone detection methods. 

II.  EXPERIMENT 

Overview: To assess the clone metrics the effect of clone 
metrics which are derived from different detection methods, we 
have built several different fault-prone module prediction 
models using these clone metrics, and compared the prediction 
accuracy. We used dataset measured on open source software, 
Lucene 2.4.0. The dataset was collected by D’Ambros et al. [1], 
and it includes complexity metrics and the number of faults 
after the release. We measured clone metrics from the source 
code, and merged it to the dataset. The number of modules was 
691, and the number of fault modules was 64.  

Clone detection tools and metrics: We used four clone 
detection tools which are widely used [5]: PMD’s Copy/Paste 
Detector (CPD), CCFinderX, Simian, and NiCad3. CPD and 
CCFinderX is token based,  Simian is text based, and NiCad3 
is parser based approach. We made two configuration settings 
on each tool as shown in Table I. One is to find small size 



TABLE II.  CORRELATION MATRIX OF THE CLONE METRICS 

Metric c1 c2 c3 c4 c5 c6 c7 c8 

c1 1  0.74  0.47  0.51  0.52  0.67  0.65  0.34  

c2 0.74  1  0.54  0.55  0.41  0.55  0.60  0.30  

c3 0.47  0.54  1  0.62  0.24  0.45  0.48  0.25  
c4 0.51  0.55  0.62  1  0.28  0.50  0.52  0.29  

c5 0.52  0.41  0.24  0.28  1  0.57  0.48  0.10  

c6 0.67  0.55  0.45  0.50  0.57  1  0.62  0.26  
c7 0.65  0.60  0.48  0.52  0.48  0.62  1  0.34  

c8 0.34  0.30  0.25  0.29  0.10  0.26  0.34  1  

TABLE III.  PREDICTION ACCURACY OF THE MODELS 

Model 
Clone 

metrics 
AUC 

Difference 

from M10 
p-value 

M1 c1 0.69 0.03 0.02 

M2 c2 0.67 0.01 0.24 

M3 c3 0.69 0.03 0.02 

M4 c4 0.66 0.01 0.53 

M5 c5 0.67 0.01 0.08 

M6 c6 0.65 0.00 0.88 
M7 c7 0.67 0.01 0.37 

M8 c8 0.66 0.00 0.75 

M9 c1...c8 0.71 0.05 0.02 

M10 - 0.66 -  

 

clones, and the other type is to find large size clones. 

Based on the outputs from these tools, we have calculated 
the values of clone metrics c1...c8, which are either the number 
of duplicated lines of code divided by total number of lines of 
code (total NLOC), or the number of duplicated tokens divided 
by total NLOC. Table 2 shows Spearman’s correlation matrix 
of the clone metrics. There was not very high correlation (The 
maximum value was 0.74). 

Variety of models: We have built eight prediction models 
M1…M8 using each metric c1…c8 respectively. In addition to 
clone metrics, we used 17 variables as candidates of 
independent variables. They are CK metrics and other object 
oriented metrics. We have also built the model M9 which 
includes all of c1…c8 metrics. In order to make a comparison 
with the effects caused by conventional metrics such as CK 
metrics, we have built the model M10 which includes none of 
c1…c8 metrics. Existing studies such as [2] which have 
adopted clone metrics in prediction models show the 
improvement of prediction accuracy is limited. We have built 
M9 since we assume when various detection methods are 
applied, code clone is characterized from various points of 
view. 

Building and evaluating prediction models: In fault-
prone module prediction, a model discriminates whether each 
module will have faults or not after software release (i.e., when 
the number of faults after the release is more than zero, the 
module has faults). To build the models, we used the logistic 
regression, which is widely used in fault-prone module 
prediction. 

Candidates of independent variables were selected based on 
Akaike’s Information Criterion (AIC). When correlation 
between independent variables was very high, one of the 
variables was removed from the candidates. In model M1 ... 
M9, clone metrics were not removed from the model. Note that 
metric c6 was removed from M9 because of  high correlation. 

To evaluate the models, we used the area under the curve 
(AUC). AUC is the more appropriate criterion for discriminant 
methods than other criteria like F1 score. The value range of 
AUC is [0, 1], and higher AUC means that prediction accuracy 
of the method is high. To calculate the evaluation criterion, we 
applied 5-fold cross validation (In each subset, the rate of fault-
prone modules was same), and repeated it two times to increase 
the number of evaluations. 

Result: The result is shown in Table 3. We statistically 
tested the difference from M10, using the Wilcoxon signed-
rank test at a significance level of 0.05. In the table, bolded 
rows indicates there was statistical difference. Focusing on M1 
… M8, M1 and M3 had statistical difference, although the 
difference is small (0.03). On configurations of c1 and c2, 
minimum length of clone is small. So, in this dataset, it may be 
good that the minimum length of clone is small. So, choosing 
proper detection tools and configurations to derive clone 
metrics would not be ignorable to improve prediction accuracy. 

Compared with M1 … M8, M9 had relatively large 
difference from M10 (0.05), and it was statistically different. 
So, using the sole detection tool is not very effective, but using 

various tool and configurations to derive clone metrics would 
be effective, compared with using only conventional metrics.  

III. CONCLUSIONS 

In this paper, we compared the prediction accuracy of fault-
prone module prediction models, when using clone metrics 
derived from the various clone detection tool and 
configurations. The experimental result showed using various 
clone metrics would be effective, compared with using only 
conventional source metrics such as CK metrics. 
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