
TABLE I. CLONE DETECTION TOOLS AND METRICS

Clone
metric

Tool Configuration

c1 CCFinderX # of minimum tokens is 50

c2 CCFinderX # of minimum tokens is 100
c3 Simian # of minimum LOC is 6

c4 Simian # of minimum LOC is 9, and ignore identifiers

c5 CPD # of minimum tokens is 100
c6 CPD # of minimum tokens is 200, and ignore literals

c7 NiCad3 block clone, and type 2 (renamed) clone

c8 NiCad3
function clone, and type 3-2c (near-miss
renamed consistently) clone

Assessing the Differences of Clone Detection

Methods Used in the Fault-prone Module Prediction

Masateru Tsunoda

Kindai University

Higashiosaka, Japan

tsunoda@info.kindai.ac.jp

Yasutaka Kamei

Kyushu University

Fukuoka, Japan

kamei@ait.kyushu-u.ac.jp

Atsushi Sawada

Nanzan University

Nagoya, Japan

sawada@se.nanzan-u.ac.jp

Abstract—We have investigated through several experiments

the differences in the fault-prone module prediction accuracy

caused by the differences in the constituent code clone metrics of

the prediction model. In the previous studies, they use one or

more code clone metrics as independent variables to build an

accurate prediction model. While they often use the clone

detection method proposed by Kamiya et al. to calculate these

metrics, the effect of the detection method on the prediction

accuracy is not clear. In the experiment, we built prediction

models using a dataset collected from an open source software

project. The result suggests that the prediction accuracy is

improved, when clone metrics derived from the various clone

detection tool are used.

Keywords— Clone metrics; fault-prone module; prediction

performance

I. INTRODUCTION

To enhance software reliability, it is important to find and
remove faults in the testing phase. Predicting fault-prone
modules is recognized to be a promising approach to finding
software faults, and many fault-prone module prediction
models are proposed in the software engineering field. When
building the prediction model, selecting proper independent
variables is important to enhance prediction accuracy.

When selecting independent variables of a fault-prone
prediction model, we investigate each software metric such as
a complexity metric of the source code from a viewpoint of the
relevance to software faults. Existing studies suggested that
code clone related metrics are some of the effective alternatives
[4], and hence using the clone metrics (e.g., the ratio of the
lines of duplicated code per the lines of code) is expected to
enhance the performance of fault prediction models. In the
literature [2], they tried to use clone metrics as independent
variables of the prediction model, to enhance the performance
of the model.

Many code clone detection methods have been proposed
[4], since code clones affect software maintainability. Each
resulting set of code clones differs from another if we use
different detection methods or if we use different
configurations of one detection method [5]. Relevant code
clone metric also differs from one to another. For instance, if
we set a smaller value to the ‘minimum size of detected clone’
parameter, we will get a larger value of the ‘ratio of clones to
lines of code’ metric because of the increasing number of

detected clones. Since we focus on the effects caused by
different clone metrics used in a fault-prone module prediction
model, we will take the differences in method configurations to
be same as the differences in detection methods.

Existing studies use clone metrics [2] calculated using the
code clones resulting from the detection method proposed by
Kamiya et al. [3]. On the other hand, changes in the prediction
accuracy are not clear if we alter the prediction model so that it
uses another method for code clone detection. Also, the
changes in prediction accuracy is not clear when the model
uses various clone metrics which is derived from different
detection methods simultaneously. In this paper, we assess the
differences in the prediction power through several
experiments in which we use the model comprised of various
clone metrics calculated from various clone detection methods.

II. EXPERIMENT

Overview: To assess the clone metrics the effect of clone
metrics which are derived from different detection methods, we
have built several different fault-prone module prediction
models using these clone metrics, and compared the prediction
accuracy. We used dataset measured on open source software,
Lucene 2.4.0. The dataset was collected by D’Ambros et al. [1],
and it includes complexity metrics and the number of faults
after the release. We measured clone metrics from the source
code, and merged it to the dataset. The number of modules was
691, and the number of fault modules was 64.

Clone detection tools and metrics: We used four clone
detection tools which are widely used [5]: PMD’s Copy/Paste
Detector (CPD), CCFinderX, Simian, and NiCad3. CPD and
CCFinderX is token based, Simian is text based, and NiCad3
is parser based approach. We made two configuration settings
on each tool as shown in Table I. One is to find small size

TABLE II. CORRELATION MATRIX OF THE CLONE METRICS

Metric c1 c2 c3 c4 c5 c6 c7 c8

c1 1 0.74 0.47 0.51 0.52 0.67 0.65 0.34

c2 0.74 1 0.54 0.55 0.41 0.55 0.60 0.30

c3 0.47 0.54 1 0.62 0.24 0.45 0.48 0.25
c4 0.51 0.55 0.62 1 0.28 0.50 0.52 0.29

c5 0.52 0.41 0.24 0.28 1 0.57 0.48 0.10

c6 0.67 0.55 0.45 0.50 0.57 1 0.62 0.26
c7 0.65 0.60 0.48 0.52 0.48 0.62 1 0.34

c8 0.34 0.30 0.25 0.29 0.10 0.26 0.34 1

TABLE III. PREDICTION ACCURACY OF THE MODELS

Model
Clone

metrics
AUC

Difference

from M10
p-value

M1 c1 0.69 0.03 0.02

M2 c2 0.67 0.01 0.24

M3 c3 0.69 0.03 0.02

M4 c4 0.66 0.01 0.53

M5 c5 0.67 0.01 0.08

M6 c6 0.65 0.00 0.88
M7 c7 0.67 0.01 0.37

M8 c8 0.66 0.00 0.75

M9 c1...c8 0.71 0.05 0.02

M10 - 0.66 -

clones, and the other type is to find large size clones.

Based on the outputs from these tools, we have calculated
the values of clone metrics c1...c8, which are either the number
of duplicated lines of code divided by total number of lines of
code (total NLOC), or the number of duplicated tokens divided
by total NLOC. Table 2 shows Spearman’s correlation matrix
of the clone metrics. There was not very high correlation (The
maximum value was 0.74).

Variety of models: We have built eight prediction models
M1…M8 using each metric c1…c8 respectively. In addition to
clone metrics, we used 17 variables as candidates of
independent variables. They are CK metrics and other object
oriented metrics. We have also built the model M9 which
includes all of c1…c8 metrics. In order to make a comparison
with the effects caused by conventional metrics such as CK
metrics, we have built the model M10 which includes none of
c1…c8 metrics. Existing studies such as [2] which have
adopted clone metrics in prediction models show the
improvement of prediction accuracy is limited. We have built
M9 since we assume when various detection methods are
applied, code clone is characterized from various points of
view.

Building and evaluating prediction models: In fault-
prone module prediction, a model discriminates whether each
module will have faults or not after software release (i.e., when
the number of faults after the release is more than zero, the
module has faults). To build the models, we used the logistic
regression, which is widely used in fault-prone module
prediction.

Candidates of independent variables were selected based on
Akaike’s Information Criterion (AIC). When correlation
between independent variables was very high, one of the
variables was removed from the candidates. In model M1 ...
M9, clone metrics were not removed from the model. Note that
metric c6 was removed from M9 because of high correlation.

To evaluate the models, we used the area under the curve
(AUC). AUC is the more appropriate criterion for discriminant
methods than other criteria like F1 score. The value range of
AUC is [0, 1], and higher AUC means that prediction accuracy
of the method is high. To calculate the evaluation criterion, we
applied 5-fold cross validation (In each subset, the rate of fault-
prone modules was same), and repeated it two times to increase
the number of evaluations.

Result: The result is shown in Table 3. We statistically
tested the difference from M10, using the Wilcoxon signed-
rank test at a significance level of 0.05. In the table, bolded
rows indicates there was statistical difference. Focusing on M1
… M8, M1 and M3 had statistical difference, although the
difference is small (0.03). On configurations of c1 and c2,
minimum length of clone is small. So, in this dataset, it may be
good that the minimum length of clone is small. So, choosing
proper detection tools and configurations to derive clone
metrics would not be ignorable to improve prediction accuracy.

Compared with M1 … M8, M9 had relatively large
difference from M10 (0.05), and it was statistically different.
So, using the sole detection tool is not very effective, but using

various tool and configurations to derive clone metrics would
be effective, compared with using only conventional metrics.

III. CONCLUSIONS

In this paper, we compared the prediction accuracy of fault-
prone module prediction models, when using clone metrics
derived from the various clone detection tool and
configurations. The experimental result showed using various
clone metrics would be effective, compared with using only
conventional source metrics such as CK metrics.

ACKNOWLEDGMENT

This research was partially supported by the Japan Ministry
of Education, Science, Sports, and Culture [Grant-in-Aid for
Scientific Research (C) (No. 25330090)], and by Nanzan Univ.
Pache Research Subsidy I-A (2015).

REFERENCES

[1] M. D’Ambros, M. Lanza, and R. Robbes, “An extensive comparison of
bug prediction approaches,” Proc. international working conference on
mining software repositories (MSR), pp.31-41, 2010.

[2] Y. Kamei, H. Sato, A. Monden, S. Kawaguchi, H. Uwano, M. Nagura,
K. Matsumoto, and N. Ubayashi, “An Empirical Study of Fault
Prediction with Code Clone Metrics,” Proc. Joint Conf. of the Int.
Workshop on Software Measurement and Int. Conf. on Software Process
and Product Measurement (IWSM-MENSURA) , pp.55-61, 2011.

[3] T. Kamiya, S., Kusumoto, and K. Inoue, “CCFinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol.28, no.7, pp.654-670,
2002.

[4] D. Rattan, R. Bhatia, and M. Singh, “Software clone detection: A
systematic review,” Information and Software Technology, vol.55, no.7,
pp.1165-1199, 2003.

[5] T. Wang, M. Harman, Y. Jia, and J. Krinke, “Searching for better
configurations: a rigorous approach to clone evaluation,” Proc. joint
meeting of the European software engineering conference and the ACM
SIGSOFT symposium on the foundations of software engineering
(ESEC-FSE), pp.455-465, 2013.

