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Abstract—To enhance the quality of software, many software 

development support tools and software development 

methodologies have been proposed. However, not all proposed 

tools and methodologies are widely used in software development. 

We assume that the evaluation of tools and methodologies by 

developers is different from the evaluation by researchers, and 

that this is one of the reasons why the tools and methodologies 

are not widely used. We analyzed the decision criteria of software 

developers as applied to the tools and methodologies, to clarify 

whether the difference exists or not. In behavioral economics, 

there are theories which assume people have biases, and they do 

not always act reasonably. In the experiment, we made a 

questionnaire based on behavioral economics, and collected 

answers from open source software developers. The results 

suggest that developers do not always act to maximize expected 

profit because of the certainty effect and ambiguity aversion. 

Therefore, we should reconsider the evaluation criteria of tools 

such as the f-measure or AUC, which mainly focus on the 

expected profit. 
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I. INTRODUCTION 

Recently, software development projects have become 
larger and more complex, and the deadlines for such projects 
are often tight. In this situation, many software development 
support tools and software development methodologies have 
been proposed to suppresss the failure of a software project 
(e.g., low quality of software and delay of delivery). For 
example, many prediction models of fault-prone modules have 
been proposed [12]. These models predict software modules 
which have faults, and support makingtesting plans. Also, 
static code analysis tools have been proposed to support 
finding faults [5]. These tools analyze software codes, and 
warn developers of spots which may violate coding standards.  

However, not all proposed tools and methodologies are 
widely used in software development. This may be because 

applying the tools and methodologies sometimes requires 
increased costs, and it is not always easy to apply such tools 
and methodologies to development. Also, they are not always 
useful for some developers, or developers may not be familiar 
with them. For example, static code analysis tools are not 
widely used [2], and even UML is not used widely [13]. We 
assume that the developers' evaluation of the tools and 
methodologies is different from the evaluation by researchers.  

As an example, we use the performance evaluation of fault-
prone module prediction. The prediction of the model includes 
false positives and false negatives. False positives mean the 
model indicates that a module includes faults, but it does not 
actually. False negatives mean the model indicates that a 
module does not include faults, but it actually does. 
Researchers evaluate the performance of the prediction model 
by the f-measure or AUC (area under the curve) [7], which are 
calculated based on the false positives and the false negatives. 
However, if developers only focus on the false positives, the 
evaluation by developers is different from researchers. For 
instance, a prediction model A is better than a model B based 
on the f-measure, but the false positives of model B are better 
than in model A. In this case, developers will highly evaluate 
model B. However, focusing on the f-measure is more 
reasonable than focusing on the false positives when the cost 
due to the false positives is the same as (or smaller than) the 
false negatives. Therefore, the sum of the false positives and 
the false negatives (i.e., the sum of the cost) is smaller when 
the f-measure is better. 

Some papers have suggested that the false positives affect 
the usability of the static code analysis tools. Johnson et al. 
[10] investigated the reasons why static code analysis tools are 
not widely used. For example, tool output, supporting 
teamwork, user input, and customizability are the reasons. Tool 
output represents a false positive (i.e., although the tool 
suggests a spot is problematic, actually it is not). Another study 
[3] also focused on false positives in static code analysis tools. 
Similarly, developers often focus on the false positives or the 



false negatives, and not on the f-measure, when evaluating the 
fault-prone module prediction. 

In this paper, we analyzed the decision criteria of software 
developers as applied to the tools and methodologies, to clarify 
whether a biased evaluation is observed or not. In behavioral 
economics, there are theories which assume people have biases, 
and do not always act reasonably. Our analysis is based on 
prospect theory [11]. Prospect theory is used in behavioral 
economics, and explains how people make decisions. In the 
software engineering domain, there are a few studies which 
have applied behavioral economics [8]. However, these studies 
did not use prospect theory in the analysis.  

In this analysis, we conducted a survey e-mailed to open 
source software developers, and tried to clarify whether 
developers have the biases illustrated in prospect theory . The 
result will be useful in reconsidering the evaluation criteria of 
development support tools and methodologies. 

II. PROSPECT THEORY 

Our analysis is based on the prospect theory [11], which is 
one of the theories in behavioral economics. Behavioral 
economics clarifies the behavior of people, based on 
experiments and observations. Traditional economics assumes 
people act rationally. In contrast, behavioral economics 
assumes people have biased thinking, and they do not always 
act rationally. Prospect theory explains how people make 
decisions when there are options which bring profits with 
different probabilities. The assumptions of prospect theory are 
different from expected utility theory [14] in traditional 
economics. 

Allais paradox: Prospect theory is proposed to solve the 
paradoxes of expected utility theory. We explain two 
paradoxes which we analyzed in our study. The first one is the 
Allais paradox [1]. Simply speaking, the paradox can be 
explained by the following example. 

 
Q1.  Which lottery would you choose? 

A1-1. You get $1,000 with a 100% possibility. 

A1-2. You get $2,000 with a 50% possibility, and get $0 
with a 50% possibility. 

 
Many people select lottery A1-1 although the expected 

profit (i.e., the multiplication of the profit and the possibility) 
of A1-1 is the same as A1-2. People choose lottery A1-1 
because it brings profit certainly. People tend to avoid the risk 
of losing the profit by selecting A1-2. That is, people make a 
decision, considering not only the expected profit, but also the 
certainty. This observation is called the certainty effect [15]. 

We focus on the certainty effect, and analyze whether it is 
observed or not in the developers’ decision. If the certainty 
effect is observed, the evaluation criteria of the development 
support tools and methodologies may have to be reconsidered. 
For example, in the two development support tools shown in 
the following, developers select a tool from between them. 

 

A2-1. A tool which always reduces 10 hours ofworking 
time. 

A2-2. A tool which reduces 25 hours of working time with 
a 50% possibility, and does not reduce working with 
a 50% possibility. 

 
Considering the expected profit of the tools, tool A2-2 is 

better than tool A2-1. As explained in the Introduction, 
researchers often evaluate the effects of the tools and 
methodologies, especially the prediction models, based on the 
expected profits such as in the f-measure or AUC. Based on 
their criteria, however, researchers would select tool A1-1 
whilemany developers, on the other hand, may select tool A2-1, 
if there is a certainty effect. 

Ellsberg paradox: The other paradox of expected utility 
theory is the Ellsberg paradox [4]. Intuitively, the paradox can 
be explained by the following example. 

 
Q3.  Which jar would you choose, if you get $1,000 when 

you draw a red ball? 

A3-1. An jar which includes 50 red balls and 50 black balls. 

A3-2. An jar which includes red balls and black balls. The 
total number of balls is 100, and the number of red 
balls and black balls are unknown. 

 
In the example, the profit is not certain, despite choosing 

A3-1 or A3-2. However, the probability of A3-1 is known, and 
that of A3-2 is unknown. A3-2 is called an ambiguity. Many 
people choose A3-1 to avoid the ambiguity. This observation is 
called as the ambiguity aversion. 

We focus on the aversion, and analyze whether it is 
observed or not in the developers’ decision. If the ambiguity 
aversion is observed, the promotion of the tools and the 
methodologies may have to be reconsidered by thedevelopers. 
For example, there are two development support 
methodologies shown in the following, and developers must 
select a methodology from between them. 

 
A4-1. A methodology which reduces 2 hours of working 

time with a 80% possibility, and reduces 1 hour with 
a 20% possibility. 

A4-2. A methodology which reduces 4 hours of working at 
best. The probability is unknown. 

 
Suppose that A4-1 is the methodology already applied by 

developers. In contrast, A4-2 is a new methodology evaluated 
by a certain development project. However, most developers 
have not applied the methodology to their project before. The 
effect of the new methodology is often unknown, and hence, it 
is regarded as containing the ambiguity. In this case, the 
maximum effect of A4-2 is larger than A4-1. However, many 
developers may select methodology A4-1, due to ambiguity 
aversion. 



TABLE I.  DETAIL OF THE QUESTIONNAIRE 

Question Related to Item 

1 

Certainty 
effect 

a) A tool which always reduces 2 hours of working time. 

b) A tool which reduces 5 hours of working time at 50% probability, and does not affect working time at 50% probability. 

2 
a) A tool which always reduces 2 hours of working time. 

b) A tool which reduces 4 hours of working time at 70% probability, and increases 1 hour at 30% probability. 

3 
a) A tool which always reduces 2 hours of working time. 

b) A tool which reduces 6 hours of working time at 90% probability, and increases 4 hours at 10% probability. 

4 

Ambiguity 
aversion 

a) A tool which reduces 4 hours of working time at 70% probability, and increases 1 hour at 30% probability. 

b) A tool which reduces 2 hours of working time at best, and does not affect working time at the worst. The probability is 
unknown. 

5 
a) A tool which always reduces 2 hours of working time.  

b) A tool which reduces 6 hours of working time at best, and increases 1 hour at the worst. The probability is unknown.  

6 

a) A tool which always reduces 2 hours of working time. 

b) A tool which reduces 5 hours of working time at best, and does not affect working time at the worst. The probability is 
unknown.  

 

III. EXPERIMENT 

A. Research Questions 

In the experiment, we made a questionnaire and collected 
answers from open source software developers, to clarify three 
research questions. 

 

 RQ1: Are there certainty effects among software 

developers when selecting software development 

support tools? 

 RQ2: Are there ambiguity aversions among software 

developers when selecting software development 

support tools? 

 RQ3: Is the answer chosen by a developer different 

from the answer chosen as a manager? 

 

If the answer of RQ1 is “yes,” the evaluation criteria of the 
tools and methodologies should be reconsidered by researchers, 
especially criteria such as the f-measure and AUC. Also, if the 
answer of RQ2 is “yes,” then how to promote the tools and the 
methodologies to developers must be reconsidered. For 
example, if there is some ambiguity in applying the tools, then 
the effects of the tools are large enough to ignore the ambiguity. 

In questions relating to RQ1 and RQ2, we assume that the 
profit of the tools for developers is the reduction of effort 
(time). In questions relating to RQ3, the subjects assume that 
their role is as a project manager, and the profit is an evaluation 
of themselves from other project’s members. This is because 
the tools and the methodologies are evaluated not only by 
developers, but also by project managers.  

B. Experimental Setup 

We e-mailed the survey to open source software developers. 
Their addresses were collected from websites [6][9]. The 
answers to the questionnaire were collected via a web form. 
The number of responses was twenty, and the average number 
of years of their experience in software development was 21.2 

(The median was 20.0). Therefore, the subjects were 
considered to understand software development very well. 

The questionnaire consists of six questions. Details of the 
questionnaire are shown in Table I. Subjects selected coding 
support tool ‘a’ or ‘b,’ assuming the following. 

  

 10 hours are needed to make a module. 

 Making a module is not hobby programming. 

 Conditions such as the time needed to learn a tool are 

the same for each tool. 

 The tools are prediction tools such as a static code 

analysis tool. 

 
The last item was selected to emphasize that the questionnaire 
does not focus on the functions of the tools, but on the 
prediction performance of the tools. 

The questions 1 to 3 relate to the certainty effect, i.e., RQ1. 
In the questions, tool ‘a’ certainly reduces working time. 
Although the effect of tool ‘b’ is not certain, the expected profit 
(i.e., reduced time multiplied by the probability) is higher than 
tool ‘a.’ To analyze the decision criteria of developers in detail, 
we specified the characteristics of tool ‘b’ as follows:  

 

 Question one: There is no risk if the tool does not work 

well. 

 Question two: There is a small risk if the tool does not 

work well. 

 Question three: There is a high risk if the tool does not 

work well although the probability is low. 

 
Questions 4-6 relate to ambiguity aversion, i.e., RQ2. In the 

questions, the probability of the effect of tool ‘a’ is known, but 
that of the tool ‘b’ is unknown. We specified the characteristics 
of tool ‘a’ and ‘b’ as follows:  

 

 Question 4: 



TABLE II.  THE RATE OF EACH ANSWER ON THE QUESTIONNAIRE 

Questions Answer (a) Answer (b) 

Q1-1 65% 35% 

Q1-2 70% 30% 

Q1-3 65% 35% 

Q1-4 55% 45% 

Q1-5 65% 35% 

Q1-6 45% 55% 

Q2-1 60% 40% 

Q2-2 70% 30% 

Q2-3 70% 30% 

Q2-4 50% 50% 

Q2-5 60% 40% 

Q2-6 45% 55% 

 

Tool ‘a’ - There is a small risk if the tool does not 

work well. 

Tool ‘b’ - There is no risk if the tool does not work 

well. 

 Question 5: 

Tool ‘a’ - There is no risk if the tool does not work 

well. 

Tool ‘b’ - Developers receive a high benefit if the tool 

works well, but there is small risk if it does not work 

well. 

 Question 6: 

Tool ‘a’ - There is no risk if the tool does not work 

well. 

Tool ‘b’ - Developers receive a high benefit if the tool 

works well, and there is no risk if it does not work well. 

 
Also, subjects selected coding support tool ‘a’ or ‘b’ from 

questions 1-6, assuming the following. The questions relate to 
RQ3.  

 

 You are a manager, and give a tool to a programmer.  

 If his/her work time is more than 10 hours, the 

evaluation of your team is down. 

 
Therefore, the number of answers by each subject is 12. That is, 
we asked the same set of questions twice. One set is for the 
role of the developer, and the other one is for the role of the 
manager. The former set is denoted by Q1-1 to Q1-6, and the 
latter set is denoted by Q2-1 to Q2-6. 

C. Results 

The ratio of answers (a) and (b) is shown in Table II. In the 
following, we explain the analysis results on each research 
question. 

The result related to RQ1: On Q1-1 to Q1-3, the ratio of 
answer (a) was higher than answer (b). As explained before, 
the expected profit (i.e., the reduced time multiplied by the 
probability) of answer (b) is higher than that of answer (a). 
Therefore, the result means developers do not always act to 
maximize the expected payoff, and the certainty effect exists 
when developers select software development support tools. 
That is, the answer to the RQ1 is “yes.”  

In Q1-1, many developers did not select the tool with a 
relatively high expected profit and no risk, if it did not work 
well. Also, in Q1-3, the developers did not select the tool with 
a high expected profit where the probability of the risk was low. 
Consequently, we must reconsider the evaluation of the tools, 
if the tools have such characteristics. 

The result related to RQ2: On Q1-4 and Q1-5, the ratio of 
answer (a) was higher than answer (b), but on Q1-6, the ratio 
of answer (a) was lower than answer (b). On Q1-4 especially, 
tool ‘a’ was selected by many developers, although tool ‘a’ has 
risk and tool ‘b’ has no risk. Thus, the result suggests that the 
ambiguity aversion exists when developers select software 
development support tools. 

In contrast, tool ‘b’ was selected although the probability of 
the effect is unknown on Q1-6. This means that when the tool 
is very effective and has no risk, it will be accepted by 
developers, even if the probability of the effect is unknown. 
Note that although the effect of tool ‘b’ on Q1-5 is similar to 
the effect on tool ‘b’ on Q1-6, many developers did not select 
tool ‘b’ on Q1-5. This is because tool ‘b’ on Q1-5 has a small 
risk and hence, developers avoided selecting it. Consequently, 
the answer to RQ2 is “yes, except for when the tool is very 
effective and has no risk.”  

The result related to RQ3: Overall, the ratio of answers 
(a) and (b) on Q2-1 to Q2-6 was similar to Q1-1 to Q1-6. 
Although the ratio of answers (a) and (b) was same on Q2-4, 
the ratio of answer (a) was higher than that of answer (b) on 
Q2-5 ( tool ‘b’ on Q2-4 has no risk, and tool ‘b’ on Q2-5 has a 
small risk). Hence, the ambiguity aversion still exists when a 
tool has a small risk. Based on this result, we concluded that 
the answer to RQ3 is “No.” That is, the decision criteria of 
project managers is almost the same as the developers. 

IV. CONCLUSION 

This paper analyzed the decision criteria of software 
developers to software development support tools and 
methodologies in order to reconsider the evaluation criteria. In 
the survey, we analyzed whether the certainty effect and the 
ambiguity aversion exist or not on the developers’ decisions. 
Based on the analysis results, we suggest the following: 

 

 Developers do not always act to maximize expected 

profit because of the certainty effect. Therefore, we 

should reconsider the evaluation criteria of tools such 

as the f-measure or AUC, which mainly focus on the 

expected profit. 

 Developers avoid selecting tools if the probability of 

the effect of the tools is unknown, and the tools have 

some risks. This result suggests that it is not easy to 

apply new tools to actual software development 

projects since the probability of the effect is generally 



unknown before the application. To promote 

development support tools, we have to suppress the 

risk of the tools. 

 The decision tendency of the project managers was 

almost the same as the developers. Therefore, the role 

of the person making the decision may not be very 

important when promoting the tools and 

methodologies. 

 

We believe that the main contribution of our paper is its 
quantitative clarification of the decisions of the software 
developers described above. 
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