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Abstract—One of the common problems in building an effort 

estimation model is that not all the effort factors are suitable as 

predictor variables. As a supplement of missing information in 

estimation models, this paper explores the project manager’s 

knowledge about the target project. We assume that the experts 

can judge the target project’s productivity level based on his/her 

own expert knowledge about the project. We also assume that 

this judgment can be further improved, because using the 

expert’s judgment solely could incur subjective perception. This 

paper proposes a regression model building/selection method to 

address this challenge. In the proposed method, a fit dataset for 

model building is divided into two or three subsets by project 

productivity, and an estimation model is built on each data subset. 

The expert judges the productivity level of the target project and 

selects one of the models to be used. In the experiment, we used 

three datasets to evaluate the produced effort estimation models. 

In the experiment, we adjusted the error rate of the judgment 

and analyzed the relationship between the error rate and the 

estimation accuracy. As a result, the judgment-incorporating 

models produced significantly higher estimation accuracy than 

the conventional linear regression model, where the expert’s 

error rate is less than 37%. 

Keywords: Software Effort Estimation, Project Management, 

Expert Judgment, Stratification, Productivity, Estimation error 

I.  INTRODUCTION 

In today’s rapid software development environment, 
software systems grow in size and complexity. Software 
project management activities such as staffing, scheduling and 
project progress management are becoming increasingly 
important to avoid project failure (cost overrun and/or delayed 
delivery). As a basis of project management, effort estimation 
plays a fundamental role in the decision making process; 
therefore, accurate effort estimation is essential to software 
development project success. 

To date, various estimation models that use past projects’ 
historical data have been proposed. One of the most commonly 

used estimation models is a linear regression model, which 
represents the relationship between the dependent variable (i.e. 
effort) and independent variables such as functional size, 
architecture, programming language, and so on.   

A major challenge in building an accurate estimation model 
is that not all of the effort estimators are available as predictor 
variables. For example, non-functional requirements greatly 
affect the ultimate development effort; however, such 
information is often not available in the historical project 
datasets. To provide supplement of missing information in 
estimation models, this paper focuses on the project manager’s 
knowledge and perception about the target project. Generally, 
experts have more complimentary information than the datasets, 
such as non-functional requirements, which are not available in 
quantitative forms in the datasets. In this paper, we assume that 
the experts are able to determine the target project’s 
productivity level (either high or low, or either high, middle or 
low) using his/her own knowledge about the project. On the 
other hand, we also assume that this subjective judgment can 
be invalid, and this paper also attempts to improve the 
estimation accuracy using regression models. 

To incorporate the expert’s judgment on productivity level 
into the model, this paper proposes the following model 
building/estimation procedure. First, the dataset of past projects 
is divided into two or three subsets by productivity, and an 
estimation model is built on each data subset. Then, the expert 
judges the productivity level of the estimation target project 
and chooses one of the models to be used. In this respect, it is 
not clear how the error rate of expert’s judgment affects the 
final estimation accuracy. So, we experimentally change the 
error rate of the judgment and analyze the relationship between 
the error rate and the estimation accuracy. 

Section 2 explains our proposed effort estimation method. 
Section 3 describes the experimental setting, results of the 
experiment and discussion. Section 4 explains related work, 
and Section 5 concludes the paper. 



II. ESTIMATION INCORPORATING EXPERT JUDGMENT 

The proposed method uses regression model and the 
productivity level given by a project manager. Figure 1 
illustrates a procedure of our method. Our method consists of 
four steps. In the first step, a fit dataset (for model building) is 
divided into subsets by productivity level. In the second step, 
an estimation model is built on each subset. In the third step, a 
project manager judges the productivity level of the target 
project. Lastly, the model is then selected based on the 
judgment and the selected model estimates the effort. The 
detail of this procedure is as follows: 

1) Dividing dataset: The dataset used to build an 

estimation model is divided into subsets by productivity. The 

productivity is defined as the ratio of functional size to effort. 

We propose two-productivity-level model and three-

productivity-level model (i.e. dividing a dataset into two 

subsets or three subsets). This is because we presume judging 

the productivity in two or three levels is not difficult for a 

project manager, but by more than three levels is difficult. 

When using the two-level model, median of productivity of 

the dataset is used, and low productivity subset yields high 

productivity subset are being made. When using the three-

level model, first quartile and third quartile of productivity is 

used, and this resulting low productivity, medium productivity 

and high productivity subsets are being made. We do not use 

33 percentile and 66 percentile because we presume judging 

particulary low (first quartile) or high (third quartile) 

productivity project is convinient than judging slightly low (33 

percentile) or high (66 percentile) productivity project. 

2) Building estimation models: An estimation model is 

built on the each subset made in step 1. For instance, when the 

two-level model is applied, two estimation models (an 

estimation model on the high productivity subset and a model 

on the low productivity subset) are built. We assume that the 

estimation model is built using linear regression. When effort 

is denoted as y, and independent variables such as functional 

size are denoted as x1, x2, and x3, the effort estimation model 

based on the linear regression model is denoted as: 

 y = β0 + β1x1 + β2x2 + β3x3 + ε (1) 

In the equation, β0 is an intercept, β1, β2, β3 are partial 
regression coefficients, and ε is an error term. Logarithmic 
transformation is often used when an effort estimation model is 
built. For example, when logarithmic transformation is applied 
to x1, x2 and y, and not to x3, the model is denoted as: 

 y = x1
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The equation is then transformed as: 
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Where functional size is denoted as x1, and x2
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productivity. The model refined by productivity makes the 
variance of productivity smaller. It helps to infer the 
coefficients β2 and β3, and the intercept β0 accurately. 
Additionally, the accurate inference of them helps the inference 
of the coefficient β0. 

3) Judging productivity: When a project manager judges 

productivity of a target project, the two-level model is applied, 

he/she provides the productivity of the project to be high or low 

level, and compared with past projects. Similarly, when the 

three-level model is applied, he/she judges the productivity of 

the project to be high, middle or low. In judgment, the project 

manager determines the factors seems to affecting productivity 

the most such as non-functional requirements of the system. 

4) Estimating effort: Based on the judgment in step 3, one 

of the estimation models built in step 2 is selected, and the 

effort of the target project is estimated. For example, when the 

two-level model is applied, and the expert selected the high 

productivity model, the effort is estimated by the selected 

model. 
Instead of dividing the dataset by productivity, the variable 

which denotes productivity level is applicable, to incorporate 
the expert’s judgment into the estimation model. We applied 
dividing the dataset because more flexible model is made by 
the divided dataset than the variable. 

III. EXPERIMENT 

First, to evaluate the effect of incorporating expert 
judgment into the estimation model, we experimentally clarify 
the estimation accuracy of our judgment-incorporating models, 
comparing to the conventional model, i.e. an effort estimation 
model based on linear regression without incorporating expert 
judgment. Then, to evaluate the influence of misjudgment, we 
change the error rate of expert judgment, and compare the 
accuracy with the conventional model. 

A. Datasets 

We used the ISBSG [7], Kitchenham [12], and Desharnais 
datasets [6]. We assume that the estimation phase is at the end 
of the project planning. So, only variables whose values were 
fixed at this point were used as independent variables. 
Logarithmic transformation was applied to the effort and the 
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Figure 1. Procedure of the expert judgment incorporated 
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function point in the datasets. Nominal scale variables were 
transformed into dummy variables (e.g. if the variable has n 
categories, it is transformed into n - 1 dummy variables). 

The ISBSG dataset is provided by the International 
Software Benchmark Standard Group (ISBSG), and it includes 
project data collected from software development companies in 
20 countries [7]. The dataset (Release 9) includes 3026 projects 
that were carried out between 1989 and 2004, and 99 variables 
were recorded. The ISBSG dataset includes low quality project 
data (Data quality ratings are also included in the dataset).  

We extracted projects based on the previous study [14] 
(Data quality rating is A or B, function point was recorded by 
the IFPUG method, and so on). Also, we excluded projects that 
included missing values (listwise deletion). As a result, we 
used 593 projects. The variables used in our experiment are FP, 
language type, development type, and development platform. 
They are same as the previous study [14]. 

The Kitchenham dataset includes 145 projects of a single 
outsourcing company, shown by Kitchenham et al. in their 
paper [12]. We selected 135 projects that do not include 
missing values. FP and Development type were chosen as the 
independent variables, and inadequate variables for effort 
estimation (e.g. estimated effort by a project manager) were 
eliminated. Development type was transformed into dummy 
variables. 

The Desharnais dataset includes 88 projects of 1980’s, 
collected from a single Canadian company by Desharnais [6]. 
The dataset is available at the PROMISE Repository [3]. We 
used 77 projects that do not have missing values.  FP, 
adjustment factor, experience of team, experience of manager, 
and language were used as independent variables, and 
development year and duration were not used. Also, the 
adjusted function point, the number of transactions, and the 
number of entities were not used to avoid multicollinearity. 
Programming language was transformed into dummy variables 
which reflect different development environments. 

The variance of productivity of the ISBSG dataset 
(collected from multi companies) was the largest, and the 
variance of the Desharnais dataset (collected from a single 
company) was the smallest in the datasets. 

B. Evaluation criteria 

To evaluate the accuracy of effort estimation, we used the 
conventional metrics such as MRE (Magnitude of Relative 
Error) [5], MER (Magnitude of Error Relative to the estimate) 
[11], and BRE (Balanced Relative Error) [15]. Especially, MRE 
is widely used to evaluate the effort estimation accuracy [18] 
(The residual sum of squares is not widely used for the 
evaluation). A lower value of each criterion indicates higher 
estimation accuracy. Intuitively, MRE means error relative to 
actual effort, and MER means error relative to estimated effort. 
However, MRE and MER have biases for evaluating under and 
over estimation [4][13]. The maximum MRE is 1 even if an 
extreme underestimate occurs (For instance, when the actual 
effort is 1000 person-hour, and the estimated effort is 0 person-
hour, MRE is 1). Similarly, maximum MER is smaller than 1 
when an overestimate occurs. So we employed BRE whose 

evaluation is not biased as is both MRE and MER [16], and we 
evaluated the judgment-incorporating models based on mainly 
BRE (MRE and MER were used for reference). 

C. Procedure of Experiment 

In the proposed method, we assume and allow misjudgment 
occurs, that is, the expert’s judgment of productivity is 
incorrect and thus he/she cannot select the right model. In the 
experiment, we generate n% misjudgment in estimation, and 
compute the estimation accuracy when the percentage varies. 
We assume that judging the productivity to be high or low is 
easy for a project manager when the actual productivity is 
extremely high or low. On the contrary, when the actual 
productivity is close to the border line that divides the high and 
low productivity classes, then misjudgment can be easily 
occurred. 

Figure 2 explains the misjudged projects generated in our 
experiment. The fit dataset is used to build estimation models 
(regarded as past projects), and the test dataset is used as the 
estimation target (regarded as ongoing projects). In the figure, 
projects in datasets are ordered by productivity, and the number 
in parentheses indicates productivity of each project. Based on 
the assumption explained in the previous paragraph, 
misjudgment of the target project in the test dataset occurs 
when productivity of the project is close to the borderline of 
productivity. To generate n% misjudgment of target projects, 
we choose top n% projects whose productivity is close to the 
borderline in the test dataset, and consider they are misjudged. 

Figure 3 shows the experimental procedure when the two-
level model is used. Details of the procedure are as follows: 

1. A dataset is randomly divided into five equal sets. 

2. One subset is treated as a test dataset, and the others 
are treated as a fit dataset (five-fold cross validation). 

3. Productivity (the ratio of functional size to effort) of 
projects included in the fit dataset is computed, and 
the fit dataset is divided into subsets by the 
productivity. 

4. Estimation model based on linear regression is built 
on each subset. When building the model, stepwise 
variable selection based on AIC is applied. 

5. Productivity levels of all projects in the test dataset are 
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Figure 2. Misjudgment of target projects 



settled by their productivity and the misjudgment rate 
(initially the misjudgment rate is zero.) 

6. For each projects in the test dataset, one of the models 
in step 4 is selected based on the productivity levels 
settled in step 5, and the effort of the project is 
estimated. 

7. Evaluation criteria are calculated based on the actual 
effort and the estimated effort. 

8. Increase misjudged projects in the test dataset, and 
Steps 5 to 7 are repeated 

9. Steps 2 to 8 are repeated, selecting other subset as fit 

dataset and test dataset. 

10. Steps 1 to 9 are repeated four times, to increase the 

number of trials. 

We also compute the estimation accuracy of the 
conventional model (without incorporating expert judgment), 
by skipping step 3, 5 and 8 (The reason for skipping these steps 
is that the conventional model does not handle productivity, 
and therefore the judgment and selection steps are not needed). 
In the experiment, we call it no-level model. To compare the 
accuracy of our method with the no-level model statistically, 
we use Wilcoxon signed-rank test at a significance level of 
0.05. In the following tables, italic face means the difference 
was statistically significant at 0.05 level, and the number in 
parentheses indicates p-value of the test. 

D. Results and Discussion 

Table 1 shows the accuracy of the no-level model and the 
proposed models. In the table, no-level indicates the 
conventional model. There is significantly difference between 
the no-level model and the proposed models. As shown in the 
tables, all criteria were greatly improved and there are 
statistically different. We conclude that if there is no 
misjudgment, the estimation accuracy can be greatly improved 
by incorporating expert judgment into the estimation model. 

Next, we further explored the influence of misjudgment rate. 
Table 2 shows the limit rate when all criteria of the judgment-
incorporating models were smaller than the no-level model. 
When the misjudgment rate was smaller than the limit rate, the 
accuracy of the judgment-incorporating models was higher 
than the no-level model. Although all evaluation criteria were 
not statistically different, if we were consider all criteria, when 
the misjudgment rate was smaller than 36% (average of limit 
rate on three datasets), performance of the two-level models 

was higher than the no-level model on average. Similarly, 
when the misjudgment rate was smaller than 36%, performance 
of the three-level model was higher the no-level model. 

As explained in the evaluation criteria section, we consider 
that the BRE is the most preferable measure in this experiment. 
So we analyzed the limit rate, by focusing on the BRE. The 
limit rate is shown in Table 3. In the table, “smaller 
(significant)” means that the average or median BRE of the 
judgment-incorporating models was significantly smaller 
(higher accuracy) than the no-level model, when misjudgment 
rate was smaller than the limit rate. “Smaller (not significant)” 
means average or median BRE of the judgment-incorporating 
models was smaller than the no-level model, when 
misjudgment rate was smaller than the limit rate, but there was 
no statistically difference. “Average” is the average of the limit 
rate on the three datasets. 

On average, when the misjudgment rate on the two-level 
model was smaller than 37%, performance of the model was 
higher than no-level model because median BRE was not lower 
than the no-level model, and average BRE was statistically 
smaller. Similarly, when the misjudgment rate on the three-
level model was smaller than 43%, performance of the model 
was higher. So, the answer of RQ2 is that when using the two-
level model, the acceptable error rate is 37% on average, and it 
is 43% on average when using the three-level model. 

Finally, we compared the two-productivity-level model 
with the three-level model. Figure 4 shows the change of 
average BRE and median BRE on each dataset. When the 
misjudgment rate was same, three-level model showed higher 
accuracy than two-level model, except for median BRE on 
Desharnais dataset, when misjudgment rate was high. However, 
the result does not mean performance of the three-level model 
is higher than the two-level model, because there is no 
evidence that the misjudgment rate of the two-level model and 
the three-level model are same. So, as our future work, we need 
to clarify actual misjudgment rate of project managers. 

IV. RELATED WORK 

Apart from the model based effort estimation, expert 
judgment based effort estimation is proposed, and its practical 
guidelines are discussed [8]. However, while benefits of the 
model based estimation and expert judgment based estimation 
are different, using both approaches is preferable to avoid risks 
in estimation [9]. Our approach exploits the both benefits of 
expert judgment and the model based estimation, to enhance 
the estimation accuracy. Some model based estimation (such as 
COCOMO [2]) uses variables based on expert judgment such 
as team skill. However, there is no model that includes highly 
project-specific but important information such as a serious 
conflict between the project leader and a best programmer [9]. 
Our approach can include in the model any kind of information 
that affects the productivity as far as the project manager is 
aware of it.  

There is a research which uses expert judgment to build a 
model. Baker [1] proposed an estimation tool which supports 
experts to build an effort estimation model. However, it uses 
the conventional estimation model, and therefore it does not 
directly include the expert’s knowledge in the model. 

Model

1

2

Fit
dataset

Original
dataset

Test
dataset

High productivity 
subset

Low productivity 
subset

Model

3
4

43

2

5,6

8

Estimated 
Effort

7
Evaluation 
criteria

 
Figure 3. Experimental procedure (two-level model) 

 



Similar notion with our assumption that subjective 
judgment includes error is pointed out by Kitchenham et al. 
[10]. They pointed out five sources of estimation uncertainty. 
Assumption error is one of the sources, and indicates error of a 
model’s input parameters. For example, difference of estimated 
functional size and actual size is the assumption error. The 
subjective judgment is regarded as the assumption error. 

In our method, dividing the dataset by productivity is 
somewhat akin to the analogy-based estimation (ABE) [17], 
which estimates effort using similar projects. Whereas ABE 
uses only available information in the historical project dataset, 
our method uses not only the available information but also 
expert judgment. Our method is also applicable to ABE, and it 
may improve estimation accuracy of ABE, because it was 
difficult to predict productivity of a target project by ABE in 
our preliminary analysis. 

V. CONCLUSIONS 

This work incorporates the expert judgment method to 
compliment software effort estimation model. We proposed a 
composite approach of model building, which has four steps. 
The first step uses a fit dataset divided into two or three subsets 
by productivity. The second step builds an estimation model on 
each subset. A project manager judges the productivity level of 
the target project in the third step. Lastly, the model is selected 
based on the expert judgment, and the selected model produce 

better effort estimates, which has been evaluated using an 
empirical experiment using real project datasets. 

In the experiment, three dataset were used and compared 
the accuracy of the judgment-incorporating models with the 
conventional model. We changed the error rate of the judgment 
and analyze the relationship between the rate and the accuracy. 
The result showed that when the two-productivity-level model 
is used, the acceptable error rate is 37% on average, and when 
the three-productivity-level model is used, the rate is 43% on 
average. We conclude that the judgment-incorporating models 
are useful for effort estimation given its improved prediction 
performance. One of important findings of this work is that 
incorporating the expert judgment is effective to improve the 
accuracy of the effort estimation model, even if misjudgment 
occurred to some extent. Future studies will be carried out to 
clarifying actual misjudgment rate of project managers, and 
applying the judgment-incorporating models to other 
estimation method such as the analogy-based estimation. This 
work is important to the research of combining expert-based 
software effort estimation in software engineering.   
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Figure 4. Transitions of average BRE and median BRE on each dataset 

 


