
A Model of Project Supervision for Process Correction and Improvement

Masateru Tsunoda, Akito Monden, Tomoko Matsumura
1
, and Ken-ichi Matsumoto

Graduate School of Information Science

Nara Institute of Science and Technology

Nara, Japan

{masate-t, akito-m, tomoko-m, matumoto}@is.naist.jp

Abstract—Recently, software functional size becomes larger,

and consequently, not only a software developer but also a

software purchaser suffers considerable losses by software

project failure. So avoiding project failure is also important for

purchasers. Project supervision (monitoring and control) is

expected for the purchaser to suppress risk of project failure.

It is performed by sharing software metrics during the project

for the purchaser to grasp the status of the project, and

corrective actions are done based on analysis results of the

metrics. Although there are some software measurement

models, the models are not enough to describe how to confirm

effects of project supervision. To acquire the effects certainly,

the purchaser and the developer should quantitatively confirm

whether the effects are acquired or not by project supervision.

In addition, the models cannot represent corrective actions

when symptoms of project failure are found. We propose the

model for project supervision. The model explains planning,

collecting data, transforming data, analyzing data, reaction

toward found issues, and confirming effect of project

supervision. With our model, project supervision can be

described more rigorously.

Keywords-risk management; measurement; Fault Tree

Analysis; Business Process Modeling Notation; corrective action

I. INTRODUCTION

Recently, software functional size becomes larger, since
software is used in various situations and needed for more
functions. Consequently, not only a software developer but
also a software purchaser suffers considerable losses if
software project is failed (delay of delivery time, project cost
overrun, or insufficient quality of developed software are
occurred). So avoiding project failure is more important for
purchasers than before. Project analyzing with a purchaser
and a developer is expected to be effective way for the
purchaser to suppress risk of project failure [14], especially
when developer’s project management skill is insufficient.
Project analyzing with a purchaser and a developer is
performed by sharing software metrics data, and based on
the results, addressing issues such as too complex source
code or insufficient unit test is conducted. In this paper, we
call the activities project supervision. The concept of project
supervision is monitoring and control.

Besides, in recent years, software developers outsource a
part of software development to subcontractors (e.g. offshore

1
 Presently with Hitachi Ltd.

developers in India or China) because of lack of human
resources, or pressure of restraining software development
cost. However, subcontractors’ project failure sometimes
causes primary contractor’s project failure. Project
supervision with a primary constructor (purchaser) and a
subcontractor (developer) is also expected to be effective.

Appropriate model of project supervision is expected to
bring benefits to the purchaser and the developer. The model
defines elements of the activities and their relationships.
More intuitively, the model clarifies how to perform project
supervision. By the model, it becomes easy to make a
rigorous plan of project supervision with less effort. The plan
enforces steady implementation of project supervision, and it
drives success of the project. In addition, the model can be
used as a template to make a catalog of project supervision.
The catalog enables reuse of know-how of project
supervision, and a company which has little experience of
data analysis easily introduces project supervision. The role
of the catalog is similar to design pattern [10].

The model is required to describe project supervision
activities. Applying plan-do-check-act (PDCA) cycle, project
supervision has four main activities, i.e. deciding objective
of supervision (plan), collecting metrics of project activities
while they are performed (do), analyzing values of metrics
(check), and addressing issues based on the analysis (act), as
shown in Fig. 1. For instance, “Evaluate source code quality”
is set as the objective of supervision, and source code
complexity metrics (e.g. cyclomatic complexity) are chosen
on plan phase. Then, (source code is made and) the metrics
are measured on do phase, and their values are compared
with certain criteria on check phase. On act phase, modules
are modified if complexity metrics do not meet the criteria,
because it suggests source code quality is not high.

Although there are some models for software

Check

Act

Plan

Addressing

issues based on

the analysis

Collecting

metrics of

project activities

Deciding

objective of

supervision

Analyzing

the values of

the metrics

Do

Figure 1. PDCA cycle of project supervision.

measurement [6][15][20][22][24], the models are not enough
to describe how to confirm effects of project supervision. In
most cases, objective of supervision is set to aim some
effects. For example, an objective of supervision “Evaluate
source code quality” is set to make modifications of source
code easy, and that is expected to prevent consuming time to
modify source code and schedule delay. To acquire the
effects certainly, the purchaser and the developer should
quantitatively confirm whether the effects are acquired or not
after addressing issues (the act phase). The confirmation is
performed using certain metrics in later process or project,
and it promotes rigorous project supervision. Capability
Maturity Model Integration (CMMI) mentions necessity of
the confirmation in Project Monitoring and Control (PMC)
process area [4]. So, the model of project supervision is
required to describe how to confirm the effects.

In addition, the existing models for software
measurement cannot represent activities of act phase. For
example, Chirinos et al. [6] proposed the software
measurement model which defines elements such as type of
metrics, range of value, and measurement method, but it
does not include elements related to act phase. To get the
effects of project analyzing and addressing issues, activities
of act phase is indispensable, and therefore, description
capability of the act phase is required for the model of
project supervision. CMMI indicates necessity of corrective
actions in PMC process area [4]. Also, the description is
found in other areas of software engineering. For example,
the Hazard Analysis and Critical Control Point (HACCP;
management system for food safety) [9], good
manufacturing practice (GMP; guidance for manufacturing
pharmaceutical products) [28], and ISO 9001 [16] require
corrective action.

In this paper, we propose a new model to describe
activities of project supervision precisely. The model
illustrates activities of correcting data, analyzing data,
addressing issues, and evaluating effects. Relationships
between the issues are shown by fault tree analysis (FTA) [8]
based figure. In addition, to promote rigorous project
supervision, the model denotes procedure of the activities
using Business Process Modeling Notation (BPMN) [25].

The major contribution of our paper is introducing
elements about addressing issues and evaluating effects to
project supervision model, and FTA is used to illustrate
relationships among analyzing data, addressing issues, and
evaluating effects. Existing models cannot signify the
relationships explicitly. With our model, a rigorous plan of
project supervision can be made with less effort. It promotes
steady implementation of project supervision, and that brings
project success. The efficiency of the model is similar to the
entity-relationship model for database [5] or UML (Unified
Modeling Language) in software design.

In what follows, Section II clarifies requirements for
modeling project supervision. Section III explains structure
of the model. Section IV introduces comparison of other
models. In the end, Section V concludes the paper with a
summary.

II. REQUIMENTS FOR MODELING PROJECT SUPERVISION

We identify requirements for the model of project
supervision by seeing activities of it. Project supervision is
classified into two types. One type is applied to ongoing
project to control it. It is used to grasp project status, and to
perform corrective action during the project. The aim is to
avoid project failure such as schedule delay or low quality
software. We call the type in-process supervision.

The other type of project supervision is applied to
finished project. Preventive action (it prevents emergence of
issues in the next project) is conducted by analysis results of
the project. The aim is to avoid next projects’ failure. We
call the type post-process supervision. Post-process
supervision treats data which is difficult to measure before
finishing the project (e.g. number of failures after software
release), or treats improvement activity which is difficult to
apply during project (e.g. drastic change of development
process).

Standard procedure of in-process supervision is as
follows:

1. Plan of in-process supervision is made. Objective of
supervision is set under an agreement between a
developer and a purchaser.

2. Values of measures are collected by hand or tool
from ongoing project.

3. Indexes or figures are made from the collected
measures.

4. Check whether problematic events occur or not
based on the indexes or the figures.

5. Corrective actions toward the problematic events
are performed.

6. Project status is confirmed in later process or after
the project finished.

Standard procedure of post-process supervision is almost
same as in-process procedure. It is as follows:

1. Plan of post-process supervision is made. Objective
of supervision is set under an agreement between a
developer and a purchaser.

2. Values of measures are collected by hand or tool
from finished project.

3. Indexes or figures are made from the collected
measures.

4. Identify problems to be improved based on the
indexes or the figures.

5. Preventive actions are conducted to suppress the
problems.

6. Next project status is confirmed by some indexes or
in-process supervision.

To describe procedure of project supervision, a model is
required to present:

Req. 1 Objective of project supervision.
Req. 2 How to collect measures.
Req. 3 How to make indexes and figures from the

collected measures.
Req. 4 How to analyze the indexes and the figures.
Req. 5 Which corrective actions or preventive actions

should be performed based on the analysis.
Req. 6 How to confirm effects of the project supervision.

Each requirement corresponds to each step of the procedures.

III. STRUCTURE OF PROJECT SUPERVISION MODEL

To satisfy the requirements stated in section II, we
propose a model for project supervision. In the model,
project supervision consists of Plan, Collection,
Transformation, Analysis, Reaction, and Confirmation. The
elements correspond to the requirements, and they explain
project supervision activities. Fig. 2 illustrates the structure
of the model using a class diagram of UML (Unified
Modeling Language). The elements and the requirements are
expressed by classes and stereotypes respectively. The
descriptions about implementations are signified by methods
of the classes, and other descriptions are signified by
attributes. Typically, in a measurement plan based on our
model, three to five metrics are set for one objective.

Details of elements and relationships of them are
explained below. Note that there are examples of the
elements in the explanations, but they are not connected to
each other (That is, they have different objective of
supervision), for we prioritized to select most understandable
examples to explain the elements.

A. Plan

The plan includes information which is needed when
making a plan of the project supervision. This element has
five items explained below.

• Objective is purpose of the project supervision, and
it denotes what is clarified by the supervision.

• Approach is brief explanation of how to analyze data.

• Period indicates when transforming data, analyzing
data, and addressing issues are performed. The
activities are done almost at the same time.

• Precondition is requirements which a project or an
organization should be fulfilled before the
supervision is applied.

• Procedure illustrates the supervision workflow (i.e.
when activities such as analyzing or corrective
action are performed) using Business Process
Modeling Notation (BPMN) [25]. In BPMN, Pool
shows an organization, and Lane does a role or a
department. We used the pool to signify a developer

and a purchaser, and the lane is used to distinguish
development process and supervision process. The
identifiers of other elements are shown in the
procedure (The identifier is explained in the next
element).

• Relationship of issues illustrates relations of issues
addressed by the supervision. They are expressed
using the notation of Fault Tree Analysis (FTA) [8].
This item contains the identifiers of other elements.
Although the confirmation indicates positive effects
which are gained by removing issues found by
project supervision, this item shows negative effects
which occur if the found issues are not addressed.
This is because FTA is used to express relationships
of causes of faults.

The approach and the precondition are used when
making a catalog of project supervision. They are useful
information for a developer and a purchaser to select a case
included in the catalog. The approach helps to grasp
overview of the case at a glance, and the precondition is used
whether the case can be applied or not. On the contrary, they
are not used to make a plan of project supervision, because
there is no need to select a case included in the catalog at the
time.

There is only one plan for an instance of project
supervision, because project supervision activities are
decided by the objective included on the plan. An example of
the procedure is shown in Fig. 3. BPMN signifies start of
process by a circle, and end of process by a circle with a bold
border. A square with rounded corners indicates a task, and a
diamond does a branch. Large box is the pool, and nested
box is the lane. Parenthesized characters are the identifier of
other elements.

Fig. 4 is an example of the relationship of issues. In FTA,
a box means an issue, and a circle indicates cause of issues.
Upper events are occurred by lower events, and the
relationship of them is shown using Boolean logic such as
OR gate. Although our model uses the diagram of FTA, it is
not necessary to perform FTA. We adopt the notation
because it fits our model very well. Besides FTA, root cause
analysis (RCA) may be useful to make the figure. Note that it
is not required that all relationships between causes and
results are illustrated by the figure. The figure is used to

Figure 2. Structure of the model of project supervision.

denote why the metric is used. That is, it shows what kind of
issue is clarified by analyzing the metric, what to do when an
issue is found, and what is expected to control the metric.

An example of descriptions included in the plan is shown
below (Note that the objectives of Fig. 3 and Fig. 4 are
different from the example).

Objective: evaluate project progress
Approach: use transition data of program size (LOC)
and number of found defects
Period: regularly repeated (e.g. performed at project
status meeting) during coding and testing
Precondition: bug tracking system (BTS) and software
configuration management (SCM) are introduced, and
bug report and source code are registered to the system
promptly (not registered them in bulk on weekend, for
example)

B. Collection

The collection explains measurement method of
measures used on the project supervision (The word
“measure” indicates base measure or derived measure
(metric) [15]). Four items are included in the element.
Details of them are explained below.

• Identifier is used to be referenced from other
elements. A combination of characters and numbers
such as “M1” is used as a value of the identifier.

• Measure name is name of collected measure such as
cyclomatic complexity. The measure name is not
indispensable to be referenced by other elements,
because the collection has the identifier. We include
this item to the model, since some common measure
names are expected to help to understand definition
of the measure.

• Period indicates when the measure is collected.
While timing of transforming data, analyzing data,
and addressing issues is shown on the plan, it does
not include timing of collecting data. This is because
timing of collecting data is different for measures,
and therefore it should be shown by each measure
using this item.

• Method denotes how to collect measures. In this item,
measurement target indicates a target which is
measured to get a value of a measure, and shows
extraction condition. Also in the item, tool is
indicated if it is needed to get the values.

One or more of the collection is included in an instance
of supervision. The collection is expressed by tabular form.
Table I is an example of the collection (In the example, the
number of the collection is three).

C. Transformation

The transformation shows how to transform collected
data into indexes or figures to analysis it. Transforming data
is performed just before analyzing data. In the element, there
are two items explained below.

• Identifier has the same role as the identifier of the
collection.

• Method explains how to transform measures defined
in the collection into indexes or figures, using a text
and an example of the figure.

An instance of supervision includes zero or more of the
transformation. If transforming data is not necessary (That is,
measures defined on the collection is directly used in the
analysis), the number of the transformation is zero.

We put a directed association between the collection and
the transformation as shown in Fig. 2, since the
transformation refers to measures defined in the collection.

Figure 3. An example of the procedure included on the plan.

We set the multiplicity of the collection, considering that a
measure on the collection is used in some indexes or figures
on the transformation, or a measure is not used by it (directly
used in the analysis). Also, the multiplicity of the
transformation is set, taking into account that an index or a
figure is made from some measures.

An example of the figure in the method is illustrated in
Fig. 5, and the text is shown below. In the examples, used
measures are same as the example of the collection shown in
Table I. Parenthesized characters at the beginning of the
example signify the identifier of the transformation.

(T1) Method: To make a line chart of the cumulative
number of faults (M1) and the number of unresolved
faults (M2), horizontal axis is set as data collected
date, and vertical axis is set as the number of faults.
To make a bar chart of average retention time (M3),
horizontal axis is set as data collected date, and
vertical axis is set as average retention time. And
then the chars are overlapped.

D. Analysis

The analysis clarifies how to check current status (i.e.
whether issues occur or not in the project) using indexes and
figures explained on the transformation. This element has
three items explained below.

• Identifier has the same role as the identifier of the
collection.

• Method describes how to analyze indexes and
figures explained on the transformation. The analysis
is done by checking trend of the figure against
particular patterns, or by comparing the index to a
certain reference value. Also, the method describes
what the analysis result suggests.

Basically, one analysis is described for one issue,
because one reaction corresponds to the issue in the model,
and it makes linking the analysis, the issue, and the reaction
easy. If analyzed target (the measure, the index or the figure)
is different but the identified issue (analysis result) is same,
each analysis is described separately, because it makes
description of analysis simple. For example, schedule delay
(issue) is recognized by two different figures, each analysis
is described independently. Also, if one analysis result
suggests two or more issues, both are described in the
analysis. For instance, if one analysis result suggests that
purchaser’s explanation of requirements is insufficient, or
software design documents made by the developer are
incomprehensible for the purchaser, but it is difficult to
identify which is occurred by the result, both are written in
the analysis.

One or more issues are recognized by analyzing one
index or one figure explained on the transformation, or one
measure defined on the collection. So, we put a directed
association between the analysis and the collection, and
between the analysis and the transformation as depicted in
Fig. 2. Also, as indicated in Fig. 2, the multiplicity of the
analysis is set.

Usually, to recognize the issue, one index, one figure, or
one measure is used, and sometimes two or more of them are
used at the same time. Additionally, the analysis does not use
the index and the figure, and use the measure only in some
cases. On the contrary, the analysis does not use the measure,
and use the index or the figure occasionally. So, we set the
multiplicity of the collection and the transformation as
shown in Fig. 2.

The following is an example of the description of the
analysis. In the example, code clone [18] means duplicate
code, and it harms software maintainability, because two or

Figure 4. An example of the relationships of issues.

TABLE I. AN EXAMPLE OF THE COLLECTION.

ID Measure name Period Method

M1
Cumulative

number of faults
During testing

� Measurement target: faults recorded in bug tracking system (BTS)

� Sum number of faults by software function regularly.
o In addition, sum number of faults by severity if severity is recorded.

M2
Number of

unresolved faults
During testing

� Measurement target: faults recorded in BTS, and their status is not close.

� Sum number of faults by software function regularly.
o In addition, sum number of faults by priority if priority is recorded.

M3
Average retention

time
During testing

� Measurement target: faults recorded in BTS, and their status is not closed.

� Compute average of elapsed time from date reported by software function regularly.

o In addition, eliminate faults whose priority is low before computing the average, if priority is recorded.
This is because low priority faults are not modified quickly, and it makes average retention time long.

more duplicate code should be modified. Parenthesized
characters at the beginning of the description signify the
identifier.

(A3) Method: Modules are regarded as having too many
code clones, when their code clone content rate (M3)
are more than 20%, and they are neither GUI
modules nor automatically generated modules.
Maintainability of the modules is considered to be
low.

E. Reaction

The reaction suggests causes of the issues found in
analyzing, and indicates how to address the issues to achieve
the objective in the plan. Three items are included in the
element. Details of them are explained below.

• Identifier has the same role as the identifier of the
collection.

• Cause of issue denotes suggested causes of found
issues. In Fig. 6, “Code clone is not aggregated” is
an example of the cause of issue. When additional
analysis is needed to identify the cause, the analysis
is describes as other project supervision. For
example, when analyzing change history of
requirement is needed to identify causes of schedule
delay, supervisions of them are made independently,
and this item mentions that causes of schedule delay
is recognized using supervision of change history of
requirement.

• Method explains corrective actions for in-process
supervision and preventive actions for post-process
supervision. In the item, Actor denotes who performs
the method. Developer, purchaser, or developer and
purchaser is set as the actor. Typically, the method
describes how to eliminate causes, and for some a
certain kind of issue, it does how to mitigate harmful
effects of the issue. For instance, in Fig. 6, if “Code
modification takes extra time” is harmful effect of
the issue, “Aggregate code clone” is eliminating the
cause, and “Use the clone detection tool” is
mitigating the effect (The clone detection tool [23]
finds duplicated code quickly, and it reduces effort
of code modification and probability of overlooking

duplicated code to be modified).
One reaction responds to one cause found by analyzing.

In some cases, one reaction relates to two analyses, because
when analyzed target is different but the identified issue is
same, each analysis is described separately, as mentioned
previously. So, we set a directed association between the
analysis and the reaction, and their multiplicities, as
indicated in Fig. 2. If analysis result is not a twofold situation
(good or bad), but a sort of ‘traffic lights,’ several possible
actions are written with the conditions. he following is an
example of the reaction. The identifier of the reaction is
parenthesized characters at the beginning of the example.

(R3) Cause of issue (A3): There may be many code clones
which can be aggregated.
Method

• Actor: developer

• Check code clones to examine whether they can be
aggregated or not, and aggregation is done if it does
not raise harmful effect. If it is difficult to aggregate
code clones, the clone detection tool is used when
source code is modified on later process.

F. Confirmation

The confirmation explains expected effects by project
supervision, and how to confirm them. In the element, there
are four items explained below.

• Identifier has the same role as the identifier of the
collection.

• Period denotes when the expected effect is observed.
For in-process supervision, “in later process” or
“after project finished” is set, and for post-process
supervision, “in next project” or “after next project
finished” is set. The reason why this item is needed
is almost same as the period in the collection.

• Expected effect describes effects which are expected
to be gained from project supervision. For instance,
as indicated in Fig. 7, when the objective is
“Evaluate project progress,” the expected effects are
“Suppress schedule delay” and “Suppress to miss
delivery time.”

• Method explains how to confirm the expected effect.
Other project supervision or an index such as

Code clone is

not aggregated

Code

modification

takes extra time

Maintainability

is low

Current status

(After coding)

Later Process

(Testing)

Earlier process

(Coding)

Cause Harmful effectIssue

Recognize

Method

Eliminate causes

(Aggregate code

clone)

Mitigate effect

(Use the clone

detection tool)

Suggest

Method

Cause of issue

Reaction

Analysis

Figure 6. The roles of the analysis and the reaction.

2010/7/15 2010/8/15

A
v
e
ra

g
e
 r
e
te

n
ti
o
n
 t
im

e

N
u
m

b
e
r
o
f
fa

u
lt
s

Average retention time

Cumulative number of faults

Cumulative number of faults (priority: high)

Number of unresolved faults

Figure 5. An example of a figure demonstrated on the transformation.

“difference between scheduled and actual delivery
time” in Fig. 7 is used to confirm it. If the period is
“in later process,” the expected effect is sometimes
confirmed by the same method as the analysis (e.g.
“Use the analysis of this supervision” in Fig. 7). The
method is not written if the expected effect is not
confirmed quantitatively. The role of the effect is
glue of other expected effects.

One or more of the confirmation is included in an
instance of supervision. An example of the confirmation is
provided below. The identifier is parenthesized characters at
the beginning of the example.

(C1) Period: in later process
Expected effect: suppress schedule delay
Method: use the analysis of this supervision

(C2) Period: after project finished
Expected effect: suppress to miss delivery time
Method: check difference between scheduled and
actual delivery time

IV. COMPARISON OF OTHER MODELS

Although there are some models which relates to
measurement process, they do not just match modeling
project supervision. Basili et al. [1] proposed GQM approach.
GQM is used to decide which metrics should be measured.
At first, a goal which is intended to be achieved through
measurement process is set, next, questions which explain
how to evaluate goal is set, and metrics are decided based on
the questions. GQM is useful to make measurement plan, but
it does not express how to do that. Other GQM approach [3]
is also different from our model in the points.

GQM+ Strategies [2] is extended model of GQM, and it
is proposed to make measurement and improvement
activities plan for whole organization. The model includes
elements similar to the reaction and the confirmation of our
model. However, GQM+ Strategies do not describe detail of
them like our model, because the model is not assumed to be
applied to in-process supervision. So it does not satisfy Req.
5 and Req. 6 sufficiently.

Kitchenham et al. [20] proposed modeling method of
measurement, based on the model which one of the authors
proposed [21]. To enhance reliability of dataset, they focused
on data structure and storing data, and defined some
elements such as data type, range, counting rule, and so on.
Namely, their model mainly covers data collection.

ISO/IEC 15939 [15] defines the measurement
information model. It mainly covers do and check phase.
However, it does not express effective of the measurement
activity. ISO/IEC 15939 defines measurement process based
on plan-do-check-act (PDCA) cycle, and mentioned act
phase. However, ISO/IEC 15939 does not define elements
for addressing issues, and therefore the measurement
information model does not include them.

Chirinos et al. [6] proposed the model for software
measurement (MOSME) which can express objective, data
collection activities, and analysis activities. The model has
elements which explain collecting and interpreting data in
detail. García et al. [12] proposed software measuring
modeling language (SMML), based on researches which
some of the authors worked on [11][13]. It includes elements
which are used to illustrate objective, data collection
activities, and analysis activities. But these models do not
include elements like the reaction and the confirmation of
our model. Hence, these models do not fit well for modeling
project supervision. Other models [22][24] are also different
from our model in the points.

Table II shows whether or not our model and these
models satisfy requirements of a model for project
supervision explained in section II (Similar comparison was
also done in [6] to clarify differences of past researches). In
the table, “Yes” of each cell means a model written in the
column satisfies a requirement written in the row, and “No”
means not satisfy. Except for our model, any model does not
satisfy all requirements completely, and especially, Req. 5
and Req. 6 are not satisfied sufficiently by them. This means
without our model, though combination of other models
cannot satisfy Req. 5 and Req. 6 completely. To satisfy Req.
5 and Req. 6, a model has to present relationships among

TABLE II. COMPARISON OF MODELS RELATED TO MEASUREMENT PROCESS.

Requirement Our model
GQM approach

[1]

GQM+ Strategies

[2]

Kitchenham et al.

[20]

ISO/IEC 15939

[15]

MOSME

[6]

SMML

[12]

Req. 1. Objective Yes Yes Yes No Yes No No

Req. 2. Collection Yes No No Yes Yes Yes Yes

Req. 3. Transformation Yes No Partially yes Yes Yes Yes Yes

Req. 4. Analysis Yes No Partially yes No Yes Yes Yes

Req. 5. Reaction Yes No Partially yes No No No No

Req. 6. Confirmation Yes No Partially yes No No No No

Evaluate project

progress

Suppress

schedule delay

Suppress to miss

delivery time

Later processCurrent status After project finished

Expected effectsObjective

Collection

Transformation

Analysis

Reaction

Use the analysis of

this supervision

Difference between

scheduled and

actual delivery time

Confirmation

Figure 7. The role of the confirmation.

analysis, reaction, and confirmation, in addition to describing
them. Our model can present the relationships with FTA
diagram, and describe activities of them with the elements.

There are tools (in-process software engineering
measurement and analysis systems [17]) which help
collecting software metrics and analyzing them [7][26][27].
Although they are useful for project supervision, using the
tool only is not sufficient to perform it. They do not support
activities of reaction to issues and confirmation of expected
effects. In addition, not all of metrics are automatically
collected and analyzed by tools. Therefore, a project
supervision plan made by our model is needed, if the tools
are used.

The requirements of a model for project supervision are
similar to some practices stated in CMMI [4]. For example,
performing corrective actions and confirming effects of them
are mentioned in Project Monitoring and Control (PMC)
process area. Also, clarifying measurement objectives,
measures, and analysis procedures are required in
Measurement and Analysis (MA) process area. However,
CMMI is guidance of process improvement, and therefore it
is not used to make a project supervision plan. In contrast,
our model may be useful to make process definition based on
CMMI.

The concept of the Balanced Scorecard (BSC) [19] is
akin to our model. BSC is used to make strategic plan of an
organization. In BSC, toward an objective, lagging indicators
and leading indicators are set, and target values of them are
settled. Also, methods to achieve the values (initiatives) are
decided. The initiative is somewhat analogous to corrective
action, and lagging indicator is similar to confirming effects.
But BSC is not suitable for describing a project supervision
plan, because it cannot specify how to perform supervision
activities.

V. CONCLUSIONS

We propose the model of project supervision. Project
supervision is performed by sharing software metrics data
with a purchaser and a developer, and based on the results,
addressing issues is conducted. Although project supervision
is expected to suppress project failure, there was no
appropriate model to describe it. We specify six
requirements for the model, and we proposed new model
which consists of six elements corresponds to the
requirements. Our model is useful for planning project
supervision more rigorously, and a purchaser and a
developer can agree the plan more smoothly. Compared to
other measurement models, our model is most fitted to
project supervision.

As future work, we will make a catalog of project
supervision based on our model. Also, we will collect some
case studies to evaluate our model. Some concrete guidance
when to use our model is needed to diffuse it.

ACKNOWLEDGMENT

This work is being conducted as a part of the StagE
project, The Development of Next-Generation IT
Infrastructure, supported by the Ministry of Education,
Culture, Sports, Science and Technology.

REFERENCES

[1] V. Basili, and H. Rombach, “The TAME project: towards
improvement-oriented softwareenvironments,” IEEE Transactions on
Software Engineering, vol. 14, no. 6, pp. 758-773, 1988.

[2] V. Basili, J. Heidrich, M. Lindvall, J. Münch, M. Regardie, and A.
Trendowicz, “GQM+ Strategies - Aligning Business Strategies with
Software Measurement,” Proc. International Symposium on
Empirical Software Engineering and Measurement (ESEM), pp.488-
490, Sep. 2007.

[3] L. Briand, S. Morasca, and V. Basili, “An Operational Process for
Goal-Driven Definition of Measures,” IEEE Transactions on
Software Engineering, vol. 28, no. 12, pp. 1106-1125, 2002.

[4] Carnegie Mellon Software Engineering Institute, CMMI for
Development, version 1.3, Carnegie Mellon Software Engineering
Institute, no. CMU/SEI-2010-TR-033, 2010, http://www.sei.cmu.edu/
library/abstracts/reports/10tr033.cfm.

[5] P. Chen, “The entity-relationship model - toward a unified view of
data,” ACM Transactions on Database Systems (TODS), vol. 1, no. 1,
pp. 9-36, 1976.

[6] L. Chirinos, F. Losavio, and J. Bøegh, “Characterizing a data model
for software measurement,” Journal of Systems and Software, vol. 74
no. 2, pp. 207-226, 2005.

[7] M. Ciolkowski, J. Heidrich, F. Simon, and M. Radicke, “Empirical
results from using custom-made software project control centers in
industrial environments,” Proc. International Symposium on
Empirical Software Engineering and Measurement (ESEM), pp. 243-
252, Oct. 2008.

[8] C. Ericson, Hazard Analysis Techniques for System Safety, Wiley-
Interscience, 2005.

[9] Food and Agriculture Organization of the United Nations, Food
Quality and Safety Systems: A Training Manual on Food Hygiene
and the Hazard Analysis and Critical Control Point (Haccp) System,
Food and Agriculture Organization of the United Nations, 1998,
http://www.fao.org/docrep/W8088E/W8088E00.htm.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley
Professional, 1994.

[11] F. García, M. Bertoa, C. Calero, A. Vallecillo, F. Ruiz, M. Piattini,
and M. Genero, “Towards a consistent terminology for software
measurement,” Information and Software Technology, vol. 48, no. 8,
pp. 631-644, 2006.

[12] F. García, F. Ruiz, C. Calero, M. Bertoa, A. Vallecillo, B. Mora, and
M. Piattini, “Effective use of ontologies in software measurement,”
The Knowledge Engineering Review, vol. 24 , no. 1, pp. 23-40, 2009.

[13] F. García, M. Serrano, J. Cruz-Lemus, F. Ruiz, and M. Piattini,
“Managing software process measurement: A metamodel-based
approach,” Information Sciences: an International Journal, vol. 177,
no. 12, pp. 2570-2586, 2007.

[14] K. Inoue, “Software Tag for Traceability and Transparency of
Maintenance,” Proc. International Conference on Software
Maintenance (ICSM 2008), pp. 476-477, Oct. 2008.

[15] International Organization for Standardization/International
Electrotechnical Commission, ISO/IEC 15939:2007 - Systems and
software engineering - Measurement process, International
Organization for Standardization/International Electrotechnical
Commission, 2007.

[16] International Organization for Standardization, ISO 9001:2008 -
Quality management systems - Requirements, International
Organization for Standardization, 2008.

[17] P. Johnson, “Requirement and Design Trade-offs in Hackystat: An
In-Process Software Engineering Measurement and Analysis
System,” Proc. International Symposium on Empirical Software
Engineering and Measurement (ESEM), pp. 81-90, Sep. 2007.

[18] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A Multilinguistic
Token-Based Code Clone Detection System for Large Scale Source

Code,” IEEE Transactions on Software Engineering, vol. 28, no. 7, pp.
654-670, 2002.

[19] R. Kaplan, and D. Norton, The Balanced Scorecard: Translating
Strategy into Action, Harvard Business Press, 1996.

[20] B. Kitchenham, R. Hughes, and S. Linkman, “Modeling Software
Measurement Data,” IEEE Transactions on Software Engineering, vol.
27, no. 9, pp. 788-804, 2001.

[21] B. Kitchenham, S. Pfleeger, and N. Fenton, “Towards a Framework
for Software Measurement Validation,” IEEE Transactions on
Software Engineering, vol. 21, no. 12, pp. 929-944, 1995.

[22] J. Lawler, B. Kitchenham, “Measurement Modeling Technology,”
IEEE Software, vol. 20, no. 3, pp. 68-75, 2003.

[23] Y. Higo, Libra, http://sel.ist.osaka-u.ac.jp/icca/libra-e.html.

[24] Department of Defense and US Army, Practical Software and
Systems Measurement: A Foundation for Objective Project
Management, v. 4.0b, 2000, http://www.psmsc.com/PSMGuide.asp.

[25] Object Management Group/Business Process Management Initiative,
Business Process Model and Notation (BPMN), version 1.2, Object
Management Group/Business Process Management Initiative, no.
formal/2009-01-03, 2008, http://www.omg.org/spec/BPMN/1.2.

[26] M. Ohira, R. Yokomori, M. Sakai, K. Matsumoto, K. Inoue, and K.
Torii, “Empirical project monitor: a tool for mining multiple project
data,” Proc. International Workshop on Mining Software Repositories
(MSR), pp. 42-46, May 2004.

[27] Quantitative Software Management. Inc., SLIM-Control, http://www.
qsm.com/tools/slim-control

[28] World Health Organization, Good Manufacturing Practices and
Inspection (Quality Assurance of Pharmaceuticals), World Health
Organization, 2007, http://www.who.int/entity/medicines/areas/
quality_safety/quality_assurance/QualityAssurancePharmVol2.pdf.

