
Naoki Ohsugi, Masateru Tsunoda, Akito Monden, Ken-ichi Matsumoto, “Effort
Estimation Based on Collaborative Filtering”, In the 5th International Conference
on Product Focused Software Process Improvement (PROFES2004), Kansai
Science City, Japan, pp.274-286, Springer, Berlin Heidelberg, April, 2004.

Effort Estimation Based on Collaborative Filtering

Naoki Ohsugi, Masateru Tsunoda, Akito Monden, and Ken-ichi Matsumoto

Graduate School of Information Science, Nara Institute of Science and Technology
Kansai Science City, 630-0192 Japan

{naoki-o, masate-t, akito-m, matumoto}@is.aist-nara.ac.jp

Abstract. Effort estimation methods are one of the important tools for project
managers in controlling human resources of ongoing or future software
projects. The estimations require historical project data including process and
product metrics that characterize past projects. Practically, in using the
estimation methods, it is a problem that the historical project data frequently
contain substantial missing values. In this paper, we propose an effort
estimation method based on Collaborative Filtering for solving the problem.
Collaborative Filtering has been developed in information retrieval researchers,
as one of the estimation techniques using defective data, i.e. data having
substantial missing values. The proposed method first evaluates similarity
between a target (ongoing) project and each past project, using vector based
similarity computation equation. Then it predicts the effort of the target project
with the weighted sum of the efforts of past similar projects. We conducted an
experimental case study to evaluate the estimation performance of the proposed
method. The proposed method showed better performance than the
conventional regression method when the data had substantial missing values.

1 Introduction

Many researches have proposed estimation methods of software development effort
[1], [2], [6], [7], [17], [18], [20]. They provide systematic procedures to predict the
effort (e.g. man-months) of ongoing or future projects based on historical (past)
project data. Accurate estimates provide practitioners many advantages in managing
the development. These allow project managers to make effective use of valuable
resources. Or these give marketers baselines of bid for external contracts; i.e., they
can know how many people will be needed to complete the certain works in the
particular duration. In fact, estimation methods have not been limited to uses for
software development; can be used for any kind of tasks. For instance, a recent study
built a method to estimate the effort required to become ISO 9001 certified [13].

These estimation methods usually uses both process and product metrics to
characterize each project. Process metrics, which quantify attributes of the
development process and of the development environment, are typically collected by
hand in forms of progress reports. On the other hand, product metrics, which quantify
characteristics of artifacts (e.g. source code) produced during the development
process, can be automatically collected by measurement tools.

One of the practical problems in using the estimation methods is that the historical
project data usually contain substantial numbers of missing values [4], [9]. Especially,
process metrics contain larger numbers of them since they are collected by hand. One
reason is that different divisions in an organization may have different policy of data
collection, i.e. some project collects a particular metric while other projects do not.
And, even if the organization has a unified policy, not all the metrics are collected in
each project due to pressing development schedule. Furthermore, the organizational
policy to collect a particular set of metrics often changes as the organization’s
software process matures, thus, older projects tend to have less data than new
projects.

Some complementary techniques have been developed for dealing with missing
values (henceforth, missing data techniques or MDTs) [10]. Strike et al. [19]
conducted experimental evaluation of some MDTs, and found all of the techniques
perform well in terms of small biases and high precision. The techniques were:
listwise deletion, mean imputation and some types of hot-deck imputation. Listwise
deletion is the simplest technique to ignore data sets that have missing values. Mean
imputation is a technique to fill the missing values on a variable with the mean of data
sets that are not missing. Hot-deck imputation is alternative forms of imputation that
are based on estimates of the missing values using other variables from the subset of
the data that have no missing values. They concluded that the simplest technique,
listwise deletion, is a reasonable choice.

However, MDTs can give bad influences to the accuracy of estimation, according
to the amount and distribution of missing values. Kromrey and Hines [12] analyzed
the performance of MDTs with a two predictor regression model. Their results
showed that listwise deletion technique did not performed well when the level of
missing data was more than 30 percent of all data. And the imputation techniques did
not perform well when the distribution of missing values is not uniformly. In the
context of effort estimation, the ratio of data that have missing values can be
frequently larger than 30 percent [5]. And the distribution of missing values is usually
not uniform.

In this paper, we propose Collaborative Filtering (CF) based effort estimation
method, under the assumption that the (historical) predictor data have a large amount
of missing values. CF is one of the estimation techniques using defective data having
substantial missing values, in information retrieval research domain. The proposed
method first evaluates similarity between a target (ongoing) project and each past
project, using vector based similarity computation equation. Then, it predicts the
effort of the target project with weighted sum of the effort of past similar projects.

Up to date, there is no method that can effectively estimate software development
effort with a large amount of missing values, while CF have been developed for
estimating user preferences using defective data that have substantial missing values.
Estimating a user’s preference is to answer a question such as: which items are likely
to be preferred by the user? And, to what degree the user seems to prefer the items?
As we consider this is an estimation of a value of a metric (an item), we believe CF
can be applied for estimating the effort as well as the user preferences, to improve
prediction accuracy. However, conventional CF cannot be directly applied to software
metrics since value range of each metric is not constant while that of item ratings in
CF are constant.

In this paper, we propose a procedure on how to apply CF for estimating software
development effort. We also present results of experimental case study conducted for
evaluating the performance of the proposed method. Our evaluation criteria focus on
the accuracy of prediction with the absolute and relative error. In the case study, we
used industrial data, which had been collected in a company, including several kinds
of process metrics that have large amount of missing values (approximately 60% of
all data), as an evaluating data set. We compared the proposed method, vs. the
Stepwise Multiple Regression Models enhanced by some different MDTs.

In what follows, Section 2 introduces related works. Section 3 proposes an
estimation procedure based on CF. Section 4 describes a procedure of an experimental
case study for evaluating the proposed method. Section 5 shows the results of our case
study and discusses their implications and limitations. In the end, Section 6 concludes
the paper with a summary and some future topics.

2 Related Work

CF has been developed as a technique for realizing Recommender Systems, by
information retrieval research community. Recommender Systems estimate individual
user’s preferences, for recommending likely preferred items selected from vast
amount of items. Resnick et al. [14] developed the GroupLens system for
recommending preferred Usenet articles extracted from large amount of news articles,
to individual users. GroupLens behave as follows, when it recommends particular
user ua. Before the recommending, each user evaluates of the articles which s/he
already read in 5 level scales: 5 (prefer) to 1 (not prefer). The system first finds
similar users by computing similarities between ua and the other users, with the vector
operation on the users’ evaluations. Then, the system estimates ua’s evaluations to
every article ij which ua has never read, with weighted sums of the other similar users'
evaluation to the article ij. At last, it recommends the articles that will be likely high
evaluated by ua. Our study provides a specific procedure to apply this algorithm for
estimating software development effort. To date, many systems and algorithms have
been proposed in the CF researches [3], [8], [16]. It is plausible that these algorithms
can estimate development effort as well as user preferences.

CF has challenged for accurately estimating user preferences using defective data
that have vast amount of missing values. In a typical Recommender Systems most
users do not evaluate more than 1 % of all items since existing items are immensity.
(e.g., you can’t evaluate all Usenet news in using GroupLens.) Sarwar et al. [16]
proposed a CF algorithm to accurately estimate users’ preferences when the data are
extremely sparsity. This algorithm succeeded on the Amazon.com’s website with a
famous statement “Customers who bought this book also bought these books”. We
focus on this feature in CF, which can accurately estimate using defective data. The
algorithms can provide improved prediction accuracy using incomplete data when we
have instantiated procedure on how to apply CF for estimating software development
effort.

3 Estimation Procedure

This section describes our estimation procedure based on CF. In the proposed
procedure, we use database in form of m×n matrix as shown in Fig. 1 where pi∈{p1,
p2, ..., pm} denotes i-th project, mj∈{m1, m2, ..., mn} denotes j-th metric, and vi,j∈{v1,1,
v1,2, ..., vm,n} denotes value of metric mj observed in project pi. Note that some
elements in the matrix are actually empty (missing values).

m1 m2 mj mb… …

…

…

p1

p2

pi

v1, 1

v2, 1

vi, 1

…

…

v1, 2

v2, 2

vi, 2

…

…

…

…

…

v1, j

v2, j

vi, j

…

…

…

…

…

v1, b

v2, b

vi, b

…

…

mn…

…

…

…

v1, n

v2, n

vi, n

…

…

…

pm

…

vm, 1

…

vm, 2 …

…

vm, j …

…

vm, b …

…

vm, n

pa va, 1 va, 2 … va, j … va, b … va, n

m1 m2 mj mb… …

…

…

p1

p2

pi

v1, 1

v2, 1

vi, 1

…

…

v1, 2

v2, 2

vi, 2

…

…

…

…

…

v1, j

v2, j

vi, j

…

…

…

…

…

v1, b

v2, b

vi, b

…

…

mn…

…

…

…

v1, n

v2, n

vi, n

…

…

…

pm

…

vm, 1

…

vm, 2 …

…

vm, j …

…

vm, b …

…

vm, n

pa va, 1 va, 2 … va, j … va, b … va, n

Fig. 1. m×n table used for estimation.

Here we assume a-th project pa is a target project in which b-th metric va,b is to be
estimated. We denote bav ,ˆ as an estimated value for va,b. Below describes 3-step

procedure to obtain bav ,ˆ .

Step 1 (normalization of metrics): Since each metric has different value range,
this first step normalizes values of metrics so that the value range becomes [0, 1]. The
normalized value normalized(vi, j) of metric vi, j (of project pi) is calculated by the
following equation.

() ()
() ()jj

jji
ji PP

Pv
vnormalized

minmax

min,
, −

−
= (1)

where Pj denotes a set of projects in which value of metric mj was observed
(collected), max(Pj) and min(Pj) denotes maximum and minimum value in {vx,j | px∈
Pj } respectively.

Step 2 (computation of similarity between projects): In this step, similarity
sim(pa, pi) between the target project pa and other projects pi is computed. Many
algorithms for computing sim(pa, pi) have been proposed in conventional CF
researches [3], [8], [14], [16].

We employ a similarity computation algorithm that was proposed in the field of
information retrieval to evaluate the similarity between two documents. The similarity
is often evaluated by treating each document as a vector of word frequencies and
computing the cosine of the angle formed by the two frequency vectors [15]. We can
adopt this formalism to compute sim(pa, pi), where projects take the role of
documents, metrics take the role of words, and values of the metrics take the role of

word frequencies. Formally, we can define the sim(pa, pi) between the target project
pa and other projects pi as:

()
() ()()

()() ()()∑∑

∑

∩∈∩∈

∩∈

×
=

iaia

ia

MMj
j,i

MMj
j,a

MMj
j,ij,a

ia
vnormalizedvnormalized

vnormalizedvnormalized

p,psim
22

(2)

where Ma and Mi denotes a set of metrics observed in project pa and pi respectively.
The value range of sim(pa, pi) is [0, 1]. Note that this computation is suitable for data
set containing missing values.

Step 3 (computation of estimation): This step calculates an estimated value bav ,ˆ
of the metric mb on the target project pa using sim(pa, pi) calculated in previous step.
Many algorithms have been proposed to implement this step [3], [8], [14], [16].

We employ weighted sum to compute estimation. The estimated value is computed
as the sum of the metrics’ values given by the other projects similar to pa. Each value
is weighted by the corresponding the amplifier(pa, pi) and the sim(pa, pi) between pa
and pi. Formally, we can define the estimated value bav ,ˆ as:

() ()()
()∑

∑

−∈

−∈

××
=

jectsnearestProki
ia

jectsnearestProki
iaiab,i

b,a p,psim

p,psimp,pamplifierv

v̂ (3)

where k-nearestProjects denotes a set of k projects (called neighborhoods) that have
highest similarity with pa. The neighborhoods must have mj as an observed metric.
Generally, the neighborhood size k affects the estimation accuracy.

To improve accuracy of the estimation, the amplifier(pa, pi) calculates an
approximate value of the vi, b with comparing the sizes of projects pa and pi, i.e. the
amplifier indicates what times pa’s value is pi’s value. The amplifier derived from the
fact that the pa’s value is several times larger (or smaller) than the pi’s value when pi
is a similar to pa. It’s because the similarity is computed by vector operation but not
Euclidean distance. Sim(pa, pi) is computed by comparing tendencies of the values,
whereas Euclidean distance is computed by comparing absolute values (cf. [14] for
Euclidean distance-based similarity) . Formally, we can define the amplifier(pa, pi) as:

()

()
()

ia

MMj j,i

j,a

ia MM

vnormalized

vnormalized

p,pamplifier ia

∩

=
∑

∩∈
(4)

where
ia MM ∩ denotes the number of elements of the product set

ia MM ∩ .

4 Case Study

4.1 Goal

The goal of this case study is to evaluate the prediction performance of the proposed
method under the situation that available data contain a large amount of missing
values. In order to evaluate the prediction performance, we used the absolute and
relative error. We compared the proposed method, vs. the stepwise multiple
regression models enhanced by the techniques for dealing with missing values.

4.2 Data Source

Table 1 shows the data we used for the case study. The data includes 1081 projects
and 14 metrics, were collected from a Japanese software company in a decade. The
company has developed some software packages that are the reusable large software
components. 36% of all projects in the company tailored them to meet the needs of
the individual customers. 13% developed individual software without the software
packages. The others (51%) were unknown projects with the missing values.

Table 1 also shows the rates of missing values in each metric. 59.83% of all data
were missing originally; however, the rates of missing values were quite different in
each metric. In m3, m4 and m14, there was no missing value. In m2 there were few
missing values (7.49%), whereas in the other 10 metrics there were at least 70%
missing values.

Table 1. Data used in case study

 Metrics Missing value rate

m1 Mainframe or not (Mainframe 1, Others 0) 75.76 %

m2 New development or not (New 1, Others 0) 7.49 %

m3 Total design cost 0.00 %

m4 Total coding cost 0.00 %

m5 Design cost for regular (payroll) staffs of a company 86.68 %

m6 Design cost for dispatched staffs from other companies 86.68 %

m7 Design cost for subcontract companies 86.59 %

m8 Coding cost for regular staffs 86.68 %

m9 Coding cost for dispatched staffs 86.68 %

m10 Coding cost for subcontract companies 86.59 %

m11 # of faults found in the review of conceptual design 83.53 %

m12 # of faults found in the review of functional design 70.77 %

m13 # of faults found in the review of program design 80.20 %

m14 Testing cost 0.00 %

4.3 Stepwise Multiple Regression Model

To construct a multiple regression model, we used a stepwise method to select a
combination of predictor variables that strongly affect the objective variable. The
stepwise procedure involves (1) identifying an initial model, (2) repeatedly altering
the model at the previous step by adding a predictor variable whose coefficient is
considered non-zero (p < 0.05), or by removing a variable whose coefficient cannot
be considered non-zero (p < 0.1), and (3) terminating the search when stepping is no
longer possible.

We employed the following three types of MDTs. These techniques are widely
used for constructing regression models using data with missing values [10], [12],
[19].

Listwise Deletion: This method constructs models with the projects which do not
contain any missing values. The data of projects which have some missing values are
simply excluded.

Pairwise Deletion: This method uses all available values wherever possible, then,
it constructs models using the same method to listwise deletion. For example, all
observed values are used regardless of whether the projects have missing other
metrics, when it calculates the averages of each metrics or the correlation coefficients
between the metrics.

Mean Imputation: This method fills each missing value with the mean of
observed values. After all of missing values are filled, it then constructs models using
the completed data.

4.4 Evaluation Criteria

In this paper we use the following five evaluation criteria. These criteria are
commonly used in estimation methods [6], [11], [19]. In the rest of paper, Y denotes
actual (observed) objective variable, Ŷ denotes its predicted variable, and “operation”
indicates an action to compare Y and Ŷ . Five criteria are computed after the operation
has executed t times.

Mean Absolute Error (MAE):

t

YY
MAE

∑ −
=

ˆ
 (5)

Variance of Absolute Error (VAE):

()
t

MAEYY
VAE

∑ −−
=

2ˆ
 (6)

Mean Relative Error (MRE):

tY

YY
MRE

1ˆ
×−= ∑ (7)

Variance of Relative Error (VRE):

t
MRE

Y

YY
VRE

1ˆ
2

×

−−=∑ (8)

Pred25: Ratio of operations whose relative errors are under 25%. Generally,
estimation is considered accurate when Pred25 is small.

()
t

YYisAccurate
Pred25 ∑ −

=
ˆ

()

≥−

<−
=−

25ˆ0

25ˆ1
ˆ

YY

YY
YYisAccurate

(9)

4.5 Experimental Procedure

The experimental procedure consists of the following 4 steps.
i. We divided the data into 50-50 two sets randomly: fit dataset and test dataset. In

the case study, we used fit dataset for constructing estimation models, and
estimated each testing cost m14 on the project in the test dataset. With the same
way, we made 10 different pairs of fit and test datasets.

ii. We evaluated performance of CF described in the section 3, using 10 different
pairs of fit and test datasets. Every evaluation criterion was measured by the
averaged values of 10 results with the different pairs of the datasets, for
improving reliability of the experimental results. In order to find an appropriate
neighborhood size (the value of k in the equation (3)), we measured MRE of each
neighborhood size (from k = 1 up to k = 50) and picked up k having smallest
MRE. We then measured MAE, VAE, VRE and Pred25 of CF employing the
selected neighborhood size.

iii. We evaluated performance of stepwise multiple regression models with three
types of MDTs described in section the 4.3, using 10 different pairs of fit and test
datasets. In each MDT, all of the criteria were measured by the average of the
results with 10 different pairs of the datasets.

iv. We concluded about which method outperformed the others, with comparing the
evaluation criteria resulted by the above ii and iii. And we also considered about
the implications and limitation observed from our results.

5 Experimental Results

5.1 Overall Results

Table 2 presents the overall result of our case study. Table 2 includes resulted
evaluation criteria with using CF with the neighborhood size 22 and using stepwise
multiple regression models with the three types of MDTs. As described in the section
4.4, a lower value indicates better performance than a higher one, in MAE, VAE,
MRE and VRE; while, a higher value is better in Pred25. Each evaluation criterion
was statistically significant at the 97% or more confidence level, with the t-testing or
f-testing.

Our results indicate CF outperformed the others, i.e., it made the most accurate
estimations with the lowest variances. All of evaluation criteria consistently indicate
CF was the most effective. In our results, listwise deletion performed relatively better
performance than the other MDTs, since MAE, MRE and VRE resulted as lower
values. MAE, MRE and VRE of mean imputation and pairwise deletion indicate these
were ineffective, although these were relatively better in terms of VAE or Pred25.

The detailed results on each method are presented in the following sections.

Table 2. Averaged evaluation criteria resulted with the 10 different experimental dataset

 MAE VAE MRE VRE Pred25

CF (k = 22) 0.21 2.20 0.82 3.45 36%
Regression (listwise deletion) 0.70 16.45 30.22 287581.18 10%

Regression (pairwise deletion) 52.75 97171.84 6344.27 18937623097.60 12%

Regression (mean imputation) 1.33 5.07 331.69 24208218.49 4%

5.2 CF based Estimation

Fig. 2 presents a line graph of the MREs resulted by applying CF with each
neighborhood size (from k = 1 up to k = 50). In the graph, the horizontal axis indicates
neighborhood sizes, and the vertical axis indicates MREs corresponding to horizontal
axis. This result shows the most accurate estimation was observed at neighborhood
size of 22.

Fig. 3 intuitively presents the estimation accuracy of the most effective case of CF.
This graph is illustrated as a double logarithmic chart for ease of understanding. The
horizontal axis in the graph, indicates the estimated testing costs and vertical axis
indicates the actual costs corresponding to horizontal axis; i.e., the points are plotted

near by the line of y = x if the estimations were correct, while, distant point from the
line indicates incorrect estimation and a more distant point from the line presents
more incorrect estimation than the nearer one. This graph suggests there were more
projects having lower testing costs than higher ones. And also shows CF accurately
estimated the testing costs regardless of whether the actual costs were high or low.

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Neighborhood Size

M
R
E

Fig. 2. Accuracy of the CF in each neighborhood size (from k = 1 up to k = 50)

0.0001

0.001

0.01

0.1

1

10

100

0.0001 0.001 0.01 0.1 1 10 100

Estimated Costs

A
c
t
u
a
l
C
o
s
t
s

0.0001

0.001

0.01

0.1

1

10

100

0.0001 0.001 0.01 0.1 1 10 100

Estimated Costs

A
c
t
u
a
l
C
o
s
t
s

Fig. 3. Relationship between actual and estimated costs using CF (k = 22)

5.3 Stepwise Multiple Regression Model

Fig. 4, Fig. 5 and Fig. 6 present the estimation accuracies of the most effective case of
each stepwise multiple regression model with listwise deletion, pairwise deletion and
mean imputation. These graphs are illustrated like Fig. 3 described in the section 5.2.
The graphs suggest there were more projects having lower testing costs than higher
ones. And also show accuracies of the estimation were lower when the actual costs

were lower. Every regression model estimated the lower actual costs incorrectly as
bigger ones.

0.0001

0.001

0.01

0.1

1

10

100

0.0001 0.001 0.01 0.1 1 10 100

Estimated Costs

A
c
t
u
a
l
C
o
s
t
s

0.0001

0.001

0.01

0.1

1

10

100

0.0001 0.001 0.01 0.1 1 10 100

Estimated Costs

A
c
t
u
a
l
C
o
s
t
s

Fig. 4. Relationship between actual and estimated costs using stepwise multiple regression
model with listwise deletion

0.0001

0.001

0.01

0.1

1

10

100

0.0001 0.001 0.01 0.1 1 10 100

Estimated Costs

A
c
t
u
a
l
C
o
s
t
s

0.0001

0.001

0.01

0.1

1

10

100

0.0001 0.001 0.01 0.1 1 10 100

Estimated Costs

A
c
t
u
a
l
C
o
s
t
s

Fig. 5. Relationship between actual and estimated costs using stepwise multiple regression
model with pairwise deletion

0.0001

0.001

0.01

0.1

1

10

100

0.0001 0.001 0.01 0.1 1 10 100

Estimated Costs

A
c
t
u
a
l
C
o
s
t
s

0.0001

0.001

0.01

0.1

1

10

100

0.0001 0.001 0.01 0.1 1 10 100

Estimated Costs

A
c
t
u
a
l
C
o
s
t
s

Fig. 6. Relationship between actual and estimated costs using stepwise multiple regression
model with mean imputation

5.4 Discussion

Although our results indicate that the proposed method greatly outperformed stepwise
regression models with the three types of MDTs, the MRE of CF (0.82) suggests the
proposed method needs further improvements. One of the ways for improving is to
develop various alternative CF algorithms for computing similarities and estimations,
which can be used instead of the equation (2) and (3). Especially, variations of the
amplifier in the equation (3) have the possibility for improving accuracies of the
estimations. Another way for improving the performances is to develop some
methods to select an appropriate combination of predictor metrics that strongly affect
the objective metrics, like the stepwise method described in the section 4.3.

One of the limitations of our study, we evaluated just only three types of MDTs for
dealing with missing values: listwise deletion, pairwise deletion and mean imputation;
however, there still exists more MDTs. For instance, Strike et al. [19] reported that
hot-deck imputation provided the best performance in his simulation. We must
compare the proposed method and the regression models using the other MDTs
including hot-deck imputation in order to evaluate these performances.

Furthermore, we evaluated using just only one dataset; however there are many
conditions (i.e., various amounts and distributions of the missing values) in the
datasets collected by the actual industrial organizations. We must encourage the
results of this case study on alternative datasets and conduct experimental simulation
with various conditions of data, for improving reliability of the study.

6 Conclusions

This paper proposed a method for estimating software development effort based on
collaborative filtering. The proposed method showed better performance than the
conventional regression method when the data had substantial missing values.

In the future, we are going to develop CF algorithms for computing similarities and
estimations, to improve estimation performances. Furthermore, we will conduct an
experiment to compare the proposed method with other MDTs including hot-deck
imputation method. we also will encourage the replication of this case study on
alternative datasets and conduct experimental simulation with various conditions of
data, for improving reliability of the study.

References

1. Albrecht, A., Gaffney, J.: Software Function, Source Lines of Code, and Development
Effort Prediction. IEEE Trans. on Software Eng., vol.9, no.6, pp.83-92 (1979)

2. Boehm, B.W.: Software Engineering Economics. IEEE Trans. on Software Eng., vol.10,
no.1, 4-21 (1984)

3. Breese, J. S., Heckerman, D., and Kadie, C.: Empirical Analysis of Predictive Algorithms
for Collaborative Filtering. In Proc. of the 14th Conf. on Uncertainty in Artificial
Intelligence, pp.43-52 (1998)

4. Briand, L., Basili, V., and Thomas, W.: A Pattern Recognition Approach for Software
Engineering Data Analysis. IEEE Trans. on Software Eng., vol.18, no.11, pp.931-942
(1992)

5. Briand, L., El Eman, K., and Wieczorek, I.: Explaining the Cost of European Space and
Military Projects. In Proc. Int’l Conf. Software Eng., vol.1, no.1, pp.61-88 (1996)

6. Conte, S.D., Dunsmore, H.E., and Shen, V.Y.: Software Engineering Metrics and Models.
The Benjamin/Cummings Publishing Company, Inc., Menlo Park, California (1986)

7. Finnie, G., and Wittig, G.: A Comparison of Software Effort Estimation Techniques: Using
Function Points with Neural Networks, Case-Based Reasoning and Regression Models.
Journal of Systems and Software, vol.39, pp.281-289, 1997.

8. Goldberg, D., Nichols, D., Oki, B.M., and Terry, D.: Using Collaborative Filtering to
Weave an Information Tapestry. Comm. of the ACM, vol.35, no.12, pp.61-70 (1992)

9. Gray, A., and MacDonnell, D.: A Comparison of Techniques for Developing Predictive
Models of Software Metrics. Information and Software Technology, vol.3, pp.425-437
(1997)

10.Little, R., and Rubin, D.: Statistical Analysis with Missing Data. John Wiley & Sons, Inc.
(1987)

11.Khoshgoftaar, T.M., Munson, J.C., Bhattacharya, B.B., and Richardson, G.D.: Predictive
Modeling Techniques of Software Quality from Software Measures. IEEE Trans. on
Software Eng., vol.18, no.1, 979-987 (1992)

12.Kromrey, J., and Hines, C.: Nonrandomly Missing Data in Multiple Regression: An
Empirical Comparison of Common Missing-Data Treatments. Educational and
Psychological Measurement, vo.54, no.3, pp.573-593 (1994)

13.Rahhal, S., and Madhavji, N.: An Effort Estimation Model for Implementing ISO 9001. In
Proc. of the 2nd IEEE Int’l Software Eng. Standards Symp., pp.278-286 (1995)

14.Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl, J.: GroupLens: An Open
Architecture for Collaborative Filtering of Netnews. In Proc. ACM Conf. on Computer
Supported Cooperative Work (CSCW’94), Chapel Hill, North Carolina, United States, 175-
186 (1994)

15.Salton, G., and McGill, M.: Introduction to Modern Information Retrieval, McGraw-Hill,
New York (1983).

16.Sarwar, B.M., Karypis, G., Konstan, J.A., and Riedl, J.: Item-Based Collaborative Filtering
Recommendation Algorithms, In Proc. 10th International World Wide Web Conference
(WWW10), Hong Kong, 285-295 (2001)

17.Shepperd, M., and Schofield, C.: Estimating Software Project Effort Using Analogies. IEEE
Trans. on Software Eng., vol.23, no.12, pp.76-743 (1997)

18.Srinivasan, K., and Fisher, D.: Machine Learning Approaches to Estimating Software
Development Effort. IEEE Trans. on Software Eng., vol.21, no.2, pp.126-137 (1995)

19.Strike, K., El Eman, K., and Madhavji, N.: Software Cost Estimation with Incomplete Data.
IEEE Trans. on Software Eng., vol.27, no.10, pp.890-908 (2001)

20.Walston, C., and Felix, C.: A Method of Programming Measurement and Estimation. IBM
Systems Journal, vol.1, pp.54-73, 1977.

