
Javawock: A Java Class Recommender System Based on Collaborative Filtering

Masateru Tsunoda Takeshi Kakimoto Naoki Ohsugi
Akito Monden Ken-ichi Matsumoto
Graduate School of Information Science,
Nara Institute of Science and Technology
Kansai Science City, 630-0192 Japan

{masate-t, takesi-k, naoki-o, akito-m, matumoto}@is.naist.jp

ABSTRACT - Many software development platforms
provide a large number of library components to make it
easy to build high quality software. On the other hand, it
became more and more difficult for developers to find
useful components in each development context because
the amount of components provided became too large
today. This paper proposes a recommender system that
provides useful Java components (library class files) to a
developer based on collaborative filtering (CF). When a
developer gives an unfinished Java program to the system,
it investigates Java library class files used in the given
program and finds Java programs that are similar to the
given program from a program repository. Then, the sys-
tem recommends to the developer Java library class files
that were used in the similar programs but were not used
in the developer’s program. An experimental evaluation
showed that the recommendation accuracy of the proposed
system was much higher than that of a naïve (non-CF)
method in all four evaluation criteria (recall, precision, F1
value, and half-life utility).

KEYWORDS - information retrieval, cosine similarity,
software component, recommender system, J2SE

1. INTRODUCTION

Today’s software development platforms provide vari-
ous types of library components to satisfy varying devel-
opers’ demands and needs. Such platforms enable devel-
opers to build software that has rich features in shorter
development periods and lower costs [9]. For instance,
Java 2 SDK, Standard Edition (J2SE) Version 1.4.1_02
provides 5568 classes and interfaces as library compo-
nents.

In spite of a large library provided, most developers
use only a small fraction of the library. For instance, Fig.
1 shows the number of library classes actually used in four
famous open source products. Each product used 224 li-
brary classes on average. Since this is only 4% of whole
J2SE library classes, there may be unaware library classes
that can improve developer’s productivity or software
quality. However, it is quite difficult for developers to find
useful library classes just because the library itself is too
large. We need a system that makes it easy to find useful
library class files in each development context.

This paper proposes Javawock, a Java class recom-

mender system based on collaborative filtering (CF). CF is
considered a powerful information filtering method, and
has been used in recommender systems that estimate
end-users’ preferable items (books, movies, tunes, etc).
Typically such system determines items to be recom-
mended in the following way. First, it collects ratings of
items from many users. A set of ratings of each user is
called a preference. Next, when a target user was specified,
the system chooses similar users in terms of their prefer-
ences. Finally, it determines recommended items by using
preferences of similar users. Usually, items that had high
ratings in the similar users’ preferences are recommended
if the items are not used (rated) by the target user.

Javawock uses the idea of CF by replacing users with
Java programs and items with Java library class files.
Then, a set of library class files used in each program is
regarded as a preference of the program. Javawock makes
a recommendation of library class files as follows. First, it
collects preferences of programs by investigating used
library class files in each program; then, when a target
program was given, it chooses similar programs in terms
of their preferences; finally, it recommends library class
files by preferences of similar programs.

In what follows, Section 2 introduces related works.
Section 3 explains the detail of CF. Section 4 explains
recommendation procedure and algorithms of Javawock.
Section 5 reports an experiment to evaluate the recom-
mendation accuracy of Javawock. In the end, Section 6
concludes the paper with a summary and some future top-
ics.

Fig. 1. The number of library classes actually

used in each product

5568 (100%)

190
(3.41%)

159
(2.86%)

110
(1.98%)

81
(1.45%)

578
(10.38%)

0

1000

2000

3000

4000

5000

6000

rt.jar
(Library)

Ant Catalina JDT-Core Lucene Xalan

#
 o
f
cl
a
ss
e
s

5568 (100%)

190
(3.41%)

159
(2.86%)

110
(1.98%)

81
(1.45%)

578
(10.38%)

0

1000

2000

3000

4000

5000

6000

rt.jar
(Library)

Ant Catalina JDT-Core Lucene Xalan

#
 o
f
cl
a
ss
e
s

2. RELATED WORK

Inoue et al. [4] proposed a Java source code retrieval
system SPARS-J. Although SPARS-J is not a recom-
mender system, it can help developers to find useful Java
classes based on keyword search. SPARS-J analyzes Java
source programs (*.java files) for a keyword indexing, and
it stores both program files and indexed keywords to a
repository beforehand. SPARS-J provides developer a
web-based interface including query edit box to enter
keywords. The developer can search program files from
the repository with keywords related to program’s features,
algorithms or authors. It is intended to be used as
“Google” to find Java source files instead of HTML texts.
One drawback of this approach is that it cannot output
relevant programs unless the developer can enter appro-
priate keywords expressing what the developer wants to
search. Generally, it is very difficult to choose appropriate
keywords for programs that are unimaginable to the de-
veloper. On the other hand, Javawock can recommend
Java class files, regardless of whether or not they are
imaginable to the developer, without giving any keyword
since it requires only an unfinished Java program written
by the developer as an input.

Ye and Fischer [11] proposed CodeBroker, a non-CF
based recommender system. It recommends a developer
useful Java components (library packages and library class
files) related to the developer's current task. CodeBroker
automatically extracts keywords from comments in pro-
gram source codes to capture the development context.
Then, CodeBroker uses these keywords as a query to re-
trieve components, and recommends them to the devel-
oper. Also, CodeBroker recognizes already used compo-
nents to avoid recommending components already be
known by the developer. The developer does not have to
enter any keywords to get recommendation because
CodeBroker automatically gathers keywords from source
code. One drawback of this approach is that precision (ra-
tio of appropriately recommended items in all recom-
mended items) greatly depends on quality of comments
written in source code. It requires fully-commented source
code stored in the program repository. In our approach of
Javawock, only class files (without source code) are re-
quired to be stored in the program repository.

McCarey et al. [5] proposed RASCAL, a CF-based
software component recommender system, which employs
a similar approach to ours. Their system makes a recom-
mendation of Java methods in the following way. First,
the system counts the number of invocations of each
method in a Java class file written by the developer, as a
preference of the class file. Next, the system finds class
files similar to the developer's file from a program reposi-
tory containing other developers’ Java class files. Then,
the system recommends methods that were invoked in the
similar class files but were not invoked in the developer's
class file. There are several differences between Javawock
and their system. First, Javawock recommends Java class
files while their system recommends Java methods. Their

method recommendation is useful if there are too many
methods in a class. However, since most of library classes
have not so many methods, we put our priority on class
recommendation with better accuracy. To gain high accu-
racy, Javawock counts only well-known classes (e.g.
classes in J2SDK and Jakarta project) used in each pro-
gram to capture the preference of the program, while
RASCAL counts methods of all the classes including lo-
cally-developed classes used in each program. This dif-
ference affects the similarity computation of programs.
Our approach is based on the idea that a set of well-known
classes used in a program is considered a native charac-
teristic (birthmark) of the program [10], while local
classes can be easily replaced or changed to other classes.
Second, we employ an item-based CF algorithm as well as
a user-based CF algorithm, while RASCAL uses only
user-based one. Generally, item-based algorithms are
much more useful than user-based ones in practical setting
with a large repository. It is because only item-based ones
allow recommender systems to cache the result of similar-
ity computation (For this reason, Amazon.com uses an
item-based algorithm in their book recommender system).
Third, we used more criteria to evaluate the recommenda-
tion accuracy.

3. COLLABORATIVE FILTERING

CF is one of the key techniques for implementing a
recommender system that recommends to a user a set of
candidate items which may be preferable or useful to the
user. For example, Resnick et al. [6] developed Grou-
pLens system which recommends interesting Usenet arti-
cles to users. It draws on a simple idea; people who agreed
in their subjective evaluation of past articles are likely to
agree again in the future. Resnick et al. proposed a basic
CF algorithm known as a user-based method.

User-based method makes recommendations with the
following procedure:
1. After using items (Usenet articles, books, movies, etc.),

users explicitly assign numeric ratings to the items.
2. A recommender system correlates the ratings in order to

determine which user’s ratings are the most similar to
other ones.

3. The system predicts ratings of new items for the target
user, based on the ratings of similar users.

4. If these new items seem to be preferred, the system rec-
ommends them to the user.
Sarwar et al. [8] proposed another basic CF algorithm

called item-based method. Item-based method can make
recommendation with extremely sparse dataset whose
ratio of rated items to whole items is only 1%. Item-based
method makes recommendations with executing 2’ and 3’
instead of 2 and 3 in the above procedure respectively:
2’. A recommender system correlates the ratings in order

to determine which item’s ratings are most similar to
other item’s.

3’. The system predicts ratings of new items for the target
user, based on the ratings of similar items already

rated by the users.
Intuitively, an idea of the item-based method can be rep-
resented as a popular sentence of Amazon.com’s recom-
mendations “Customers who bought this book also
bought ...”.

Javawock assumes each Java program (a class file
written by a developer) as a user, and assumes each Java
library class file used in the program as an item (Note that
a class file can become both the user and the item since
the class file itself uses a library class file). Javawock ana-
lyzes which Java library class files were used in each de-
veloper's class file. Then, Javawock puts high ratings to
library classes used in the developer’s class file, and low
rating to library classes unused in it. We implemented
both user- and item-based method as Javawock’s CF algo-
rithms. With the user-based method, Javawock predicts
which library class files will be used by the developer,
based on the similarity of how each class uses library
classes. With item-based method, Javawock predicts
which library class files will be used by each developer,
based on the similarity of how each library classes are
used by other classes.

4. RECOMMENDING JAVA CLASS FILES

4.1. Architecture of recommender System

Fig. 2 shows the architecture of Javawock. Javawock
consists of a web-based frond-end processing (web FEP),
a collaborative filtering engine (CF engine) and a program
repository (PR). Javawock recommends Java library class
files for a Java program uploaded by user. The uploaded
Java program is a class file (not a source file), thus, the
users must compile their Java program before uploading
it.

Javawock recommends library class files as follows:
1. User uploads an unfinished Java program (target pro-

gram) to the web FEP.
2. The web FEP analyzes the target program to get a set

of library class files used in the given program (pref-
erence). To get the preference, the web FEP uses
Used-Class analysis engine proposed in jbirth [10].

3. The web FEP sends the preference to the CF engine.
4. The CF engine receives the preference and makes a

recommendation by using other programs’ prefer-

ences stored in the PR.
5. The CF engine returns the recommendation result to

the web FEP.
6. The web FEP shows a user the recommendation. The

recommendation result consists of library class names,
recommendation scores, abstracts of Java API docu-
ments and links (URLs) to them.

Fig. 4 shows an input screen that uploads class file,

and Fig. 5 shows an output screen of the recommendation
result. Javawock has a Google like interface. Each rec-
ommended library class is linked to the Java API docu-
ment.

4.2. Recommendation methods

Javawock provides three types of recommendations.
The first one employs a user-based CF method. With this
method, Javawock makes recommendation based on the
similarity between programs. The similar programs use
similar library class files, compared with the target pro-
gram. The user-based method proceeds as follows:
1. Javawock chooses several similar programs from PR.
2. Javawock computes a recommendation score of each

library class file whom similar programs use and the
target program does not use.

3. Javawock shows recommended library class files
ranked by their score.
The second method employs an item-based CF method.

Javawock makes recommendation based on the similarlity
between library class files (similarity of how they are
used). The class file l0 and l1 are considered similar each
other if l0 and l1 are used in the same set of programs. The
item-based method proceeds as follows:
1. Javawock chooses several similar library class files

for each library class file.
2. Javawock computes a recommendation score of each

library class file li if the target program does not use it
but uses a library class file lk that is similar to li.

3. Javawock shows recommended library class files
ranked by their score.
The third method simply outputs Java class files that

are similar to the given program based on the user-based

Fig. 2. The architecture of Javawock

 l1 l2 … lj … lb … ln

p1 u1,1 u1,2 … u1,j … u1,b … u1,n

p2 u2,1 u2,2 … u2,j … u2,b … u2,n

… … … … … …

pi ui,1 ui,2 … ui,j … ui,b … ui,n

… … … … … …

pa ua,1 ua,2 … ua,j … ua,b … ua,n

… … … … … …

pm um,1 um,2 … um,j … um,b … um,n

Fig. 3. m×n table used for recommendation

Web FEP CF Engine
1

5

PR Javawock

User

Recommendation

Unfinished Java Program
(Java class file)

Preference of
the Unfinished Program

Recommendation

Preferences of
the Other Programs

2

3

4

similarity computation algorithm. (Note that we haven’t
experimentally evaluated this method in this paper).
4.3. Collaborative Filtering Algorithm for the

Recommendation

The CF engine computes the similarity and the rec-
ommendation score to make a recommendation. When
making a recommendation, CF engine uses the program
repository in form of m×n matrix as shown in where pi
∈{p1, p2, ..., pm} denotes i-th program, lj∈{l1, l2, ..., ln}
denotes j-th library class file, and ui,j∈{u1,1, u1,2, ..., um,n}
denotes status of whether library class file lj is used or not
by program pi. If program pi uses library class file lj, the
value of ui,j (library class status) is set to 1, and if program
pi does not use library class file lj, the value of ui,j is set to
0. So there is no missing value in the matrix.

Our CF engine uses the cosine similarity algorithm to
compute similarity. Similarity is computed to choose
similar programs or similar library class files. Although
various similarity computation algorithms are proposed
for CF [1][2][6][8], we selected the cosine similarity algo-
rithm because it showed the highest accuracy in our pilot
experiment. This algorithm was originally proposed to
evaluate the similarity between two documents in the field
of information retrieval. The similarity is often evaluated
by treating each document as a vector of word frequencies
and computing the cosine of the angle formed by the two
frequency vectors [7].

On the user-based method, the similarity, sim(pa, pi)
between the target program pa and other program pi is
formally defined as the following (1). In this equation,
programs, library class files and library class statuses are
used instead of documents, words and word frequencies.
The value range of sim(pa, pi) is [0, 1].

∑∑

∑ ×
=

2
,

2
,

,,

)()(
),(

jija

jija

ia

uu

uu
ppsim (1)

In the item-based method, similarity sim(lb, lj) between
the library class file lb and other library class file lj is for-
mally defined as (2).

∑∑

∑ ×
=

2
,

2
,

,,

)()(
),(

jibi

jibi

jb

uu

uu
llsim (2)

Our CF engine uses the weighed sum algorithm [8] to
compute the recommendation score. The recommendation
score is a predicted value of ua,j owned by program pa.
The CF engine predicts ua,j of each library class file which
is not used by the target program. Although various rec-
ommendation score computation algorithms are proposed
for CF [1][2][6][8], we selected the weighed sum algo-
rithm because it showed the highest accuracy in our pilot
experiment.

When computing a score, the CF engine does not use
all similar programs or all similar library class files, but
uses k similar programs or k similar library class files. k is
called neighborhood size.

In the user-based method, the recommendation score
Ra,b, which is a predicted value of ua,b owned by program
pa is formally defined as (3). The recommendation score is
computed with the weighed average of ui,b owned by
similar programs pi. Each weight is similarity between the
target program pa and each program pi. k-nearestPro-
grams means a set of k similar programs.

∑

∑

−∈

−∈

×

=

gramsnearestProkK

Ka

gramsnearestProkK

bKKa

ba
ppsim

uppsim

R
),(

),(,

,
 (3)

In the item-based method, the recommendation score
Ra,b, which is a predicted value of ua,b owned by program
pa is formally defined as (4). The recommendation score is
computed with the weighed average of ua,j owned by
similar library class files lj. Each weight is similarity be-
tween library class file lb and other library class lj.
k-nearestLibraryClassFiles means a set of k similar li-
brary class files.

∑

∑

−∈

−∈

×

=

ilesraryClassFnearestLibkK

Kb

ilesraryClassFnearestLibkK

KaKb

ba
llsim

ullsim

R
),(

),(,

,
 (4)

Fig. 4. The input screen of Javawock

Fig. 5. The output screen of Javawock

5. EXPERIMENTAL EVALUATION

5.1. Dataset

For an experimental dataset, we extracted classes from
rt.jar, class library of J2SE (Java 2 Platform Standard Edi-
tion) Software Development Kit. We selected 371 com-
monly used classes as programs P={p1, p2, ..., pm,} and
331 classes as library class files L={l1, l2, ..., ln}, which is
a subset of P. The number of library class files n is smaller
than that of programs m because we excluded 40 library
class files (from L) that were not used by any program in
P, Consequently, we made 371×331 size dataset from
them.
5.2. Experimental Procedure

In the experiment, we evaluated both the user-based
method and the item-based method. The experiment pro-
ceeds as follows (leave-one-out cross-validation):
1. i-th program pi is regarded as the target program, and

it is removed from the dataset.
2. ui,j is regarded as unknown, and Javawock computes

Ri,j, a recommendation score for library class file lj
(i.e. Javawock predicts the value of ui,j).

3. Repeat Step 2 for all j.
4. Repeat Step 1, 2, 3 for all i.

In order to virtually produce an unfinished program of
Pi, we also used a criterion q, denoted as Known Compo-
nent in Fig 4,..,8, which is a percentage of library class
files regarded to be already used in Pi to the total library
class that will be used when Pi is finished. We varied q

from 10% to 100% at 10% intervals by step-by-step add-
ing actually used library class files in Pi. Note that at least
one library class file is remain unknown even if q=100%
(see Step 2).

We conducted pre-examination to define the
neighborhood size k used in (3) and (4), and defined k to
be 3 for both (3) and (4) since recommendation accuracy
became the highest in this case.

We also computed recommendation scores using a
naïve (non-CF) method called average-based method to
compare with proposed methods. In the average-based
method, the recommendation score Ra,b, predicted value of
ua,b owned by program pa is formally defined as (5), where
Nc is the number of entire programs, and Nl is the number
of programs that uses library class file lb.

c

l
ba

N

N
R =,

 (5)

5.3. Evaluation Criteria

We used four criteria (recall, precision, F1-value and
half-life utility) to evaluate recommendation accuracy of
the proposed methods. These are often used to evaluate
accuracy of CF based system [3]. The higher these values
are, the more accurate evaluated method is.

Precision is a ratio of appropriately recommended li-
brary class files to entire recommended library class files,
formally defined as (6), where Nr is the number of entire
recommended library class files, and Na is the number of
appropriately recommended library class files. That is, Nr

Fig. 6. F1 value of each method

Fig. 7. Half-life utility of each method

Fig. 8. Precision of each method

Fig. 9. Recall of each method

0%

20%

40%

60%

80%

10% 30% 50% 70% 90%

Known Components

F
1
 V
a
lu
e

User-based

Item-based

Average-based

0%

20%

40%

60%

80%

10% 30% 50% 70% 90%

Known Components

H
a
lf
-L
if
e
 U
ti
lit
y

User-Based

Item-Based

Average-based

0%

20%

40%

60%

80%

10% 30% 50% 70% 90%

Known Components

R
e
c
a
ll

User-Based

Item-Based

Average-based

0%

20%

40%

60%

80%

10% 30% 50% 70% 90%

Known Components

P
re
c
is
io
n

User-Based

Item-Based

Average-based

is the number of scores that satisfy Ri,j=1, and Na is the
number of scores that satisfy both Ri,j=1 and ui,j (predicted
values of Ri,j) =1.

r

a

N

N
Precision = (6)

Recall is a ratio of appropriately recommended library
class files to entire library class files actually used in the
program pi, formally defined as (7), where Nu is the num-
ber of entire library class files actually used in pi, and Na is
the number of appropriately recommended library class
files. That is, Nu is the number of scores that satisfy ui,j=1,
and Na is the number of scores that satisfy both Ri,j=1 and
ui,j=1.

u

a

N

N
Recall = (7)

F1 value is a combined criterion of recall and preci-
sion, formally defined as (8).

RecallPrecision

RecallPrecision
F

+

××
=
2

1
 (8)

Half-life utility (H) is a criterion to evaluate the rank-
ing based on recommendation score, formally defined as
(9) and (10), where sa,d is the predicted library class status
of library class file lj recommended to the target program
pa at d-th rank (That is, the value of sa,d is same as the pre-
dicted value of ua,j). α is the rank of a recommended li-
brary class file whom users will view with a probability of
50%. We defined α to be 10. Ha

max is equal to Ha when the
system makes perfect recommendation.

∑ −−
=

d
d

da

a

s
H

)1/()1(

,

2 α
 (9)

∑

∑
×=

a a

aa

H

H
H

max
100 (10)

5.4. Experimental Result

Experimental result is shown in Fig. 6,…,Fig. 10.
These graphs show that user-based method has good rec-

ommendation accuracy. Fig. 6 shows the relation between
the highest F1 value of each method and the percentage of
known components (library class files considered to be
already used by the developer). We changed threshold to
find the highest F1 value at each percentage of known
components. The line of the average-based method in Fig.
6 is parallel to x-axis because average-based method is
independent of pi to make recommendation.

Fig. 6 shows that the user-based method is the most
accurate of the three and the average-based method is the
most inaccurate. In this figure, when known components
≈100%, i.e. programming is almost finished, F1 value of
the user-based is 66%, that of the item-based is 46%, and
that of the average-based is 18%. When q<20%, the
item-based method is less accurate than the average-based
method. This indicates that the developer needs to build at
least 20% of the target program to get better recommenda-
tion when he/she wants to use the item-based method. Fig.
7,…, Fig. 9 show other criteria when F1 value is the high-
est. The trends in these graphs are similar to Fig. 6.

Fig. 10 shows the relation between recall and precision
of each method (when q≈100%). The curve of the
user-based method is always the highest of three methods
and that of the average-based is always the lowest. From
Fig. 6,…, Fig. 10, we conclude that the user-based method
is always more accurate than the average-based method,
and the item-based method is more accurate than the av-
eraged-based method if q≥30%.

6. CONCLUSION

In this paper, we proposed Javawock, a Java class re-
commender system, based on CF. Javawock employs both
user-based and item-based method to make recommenda-
tions. An experimental evaluation showed that the
user-based method is always more accurate than the naïve
(non-CF) average-based method, and the item-based
method is more accurate than the averaged-based method
if the percentage of known components≥30%.

The limitation of our experiment is that we used only
one dataset for evaluation. We will conduct further ex-
periment using other datasets to extensively evaluate the
proposed method.

ACKNOWLEDGEMENTS

This work is supported by the EASE (Empirical Approach
to Software Engineering) project of the Comprehensive
Development of e-Society Foundation Software program
of the Ministry of Education, Culture, Sports, Science and
Technology of Japan, and Grant 15103 of the Open Com-
petition for the Development of Innovative Technology
program.

REFERENCES

1. J. Breese, D. Heckerman, and C. Kadie, “Empirical
Analysis of Predictive Algorithms for Collaborative
Filtering,” in Proc. Conf. on Uncertainty in Artificial
Intelligence, Madison, WI, pp. 43-52, Jul. 1998.

Fig. 10. The relation between recall and precision

0%

20%

40%

60%

80%

30% 50% 70% 90%
Recall

P
re
c
is
io
n

User-based

Item-based

Average-based

2. D. Goldberg, D. Nichols, B.M. Oki, and D. Terry,
“Using collaborative filtering to weave an informa-
tion tapestry,” Communications of the ACM, vol..35,
no.12 pp. 61-70, Dec. 1992.

3. J. Herlocker, J. Konstan, L. Terveen, and J. Riedl,
“Evaluating collaborative filtering recommender sys-
tems,” ACM Transactions on Information Systems

(TOIS), vol.22 , no.1, pp.5-53, 2004.
4. K. Inoue, R. Yokomori, H. Fujiwara, T. Yamamoto,

M. Matsushita, S. Kusumoto, “Component Rank:
Relative Significance Rank for Software Component
Search,” In Proc. International Conference on Soft-
ware Engineering, pp.14-pp.24, Portland, Oregon,
2003.

5. F. McCarey, M. Ó Cinnéide, and N. Kushmerick,
“RASCAL: A Recommender Agent for Software
Components in an Agile Environment,” In Proc. Arti-
ficial Intelligence and Cognitive Science Conference,
Castlebar, Ireland, pp.107-pp.116, Sep. 2004.

6. P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom,
and J. Riedl, “GroupLens: An Open Architecture for
Collaborative Filtering of Netnews,” In Proc. ACM

Conf. on Computer Supported Cooperative Work,
Chapel Hill, NC, pp.175-pp.186, Oct. 1994.

7. G. Salton, and M. McGill, Introduction to Modern

Information Retrieval. New York: McGraw-Hill,
1983.

8. B. Sarwar, G. Karypis, J. Konstan, and J. Riedl,
“Item-Based Collaborative Filtering Recommenda-
tion Algorithms,” In Proc. International World Wide

Web Conference, Hong Kong, China, pp. 285-295,
May 2001.

9. C. Szyperski, Component Software: Beyond Ob-
ject-Oriented Programming. New York: Addi-
son-Wesley, 1998.

10. H. Tamada, M. Nakamura, A. Monden, and K. Ma-
tsumoto, “Design and evaluation of birthmarks for
detecting theft of Java programs,” In Proc. IASTED
International Conference on Software Engineering,
Innsbruck, Austria, pp.569-575, Feb. 2004.

11. Y. Ye, and G. Fischer, “Supporting Reuse by Deliv-
ering Task-Relevant and Personalized Information,”
In Proc. International Conference on Software Engi-
neering, Orlando, FL, pp.513-523, May 2002.

