a3 7 b4 TDF—AA]

Eiilis

fREHE

K Bk GwhD

A

15-1-037-0064

BRI EHZ

Rk 3141 A 31 HEEH

B

HH, F=LIZBIDANLHE, T2bb7 =LAl NERBSNTWD. FIZHERT &R0
T4 =7 T == T E AV RSO~ AL THD. K10 FRijd, mR2THEH
HET2008LL, Y=L ALIZT~F 2T L-YLIBESTCWEDR, T4 —TT7—=0 70X
BIZE Y, ERAFHELHENTEXDL012720, AR by 77 aiMESBlE Lz, S
SRHED X) BREMER S —NIX LT, T AT T TREIITH D EN gD, T,
FEN DTN — L TIEE I . WEROFIETHRREEN, T4 — 7 7 —=v 7% H0hiis b
W E BIF 5 Z LN TE L0, £ TR T, BRHEEOPNT —LTHT 4 —7 T —
=V T WENIR DN ERBFET D.

ARFIETIX, a2 %7 b4 LIRS EOMHEWUEIERE VD R — K7 — A% B python &
BT — LAl BT D AT —~<X 2 BRI D, £ T 44— T = T OFH
WCHWADREAI T L7270 7T A EERT D, Z0o7a 7T A%, £2TT7 UL 2L0,
V—FOFRHILTIUSHDOYAZF2H D, KD 4 FETIIREFOCRIITOHD LN
k218, T4—FT—=0 T EITHI =LAl OFE L VIG U TG E 2T 5 b 0%
BT 5. WICTF 4 —FFA =0 T 2ITH 7 — L AL ZIERR L, REEAATFET 07T 0Lk s e
THEBEITHOZET, FBICEY, ax7 M4 DX 5 RBERGFHOPENF — LA THREFICEE
NETDO0EET B.

1 BB . 1
L I B - 7 = SRS U SRR UUR PR 1
12 T A T T e ————— 1
1.3 T A =TT U E BT B AL et 1
To A TR B Ao a e e e e e r e —————aaaaaaaa 1
LI o N = - L ISR 1
| - == 7Y - - 2SSOSR USROS 2

A B Ny A N 2

3 WEMFERIOTSLDER 4
3.1 KERFETFEF T 7T IDBREE oot e e 4
8.2 KRR 71 27T oo 6

4 Fu—TS5—=2FZRWE=aRT FAAl 7
4.1 Python DA VA F— N BLOBREEEDTRIE oo 7
A, BB U Tu R R o oo e e e e et e e et e et e e raeaaaaas 7

B R - SR OERRE 8

B 9

1. F#

1.1 XHAROER

AR, ar Ba—XOaMaEic Ly, NTHREOEMNEHIZHEIL L TWD . TR T, Mk
EMEEND N OFEREN 2 a v Ea— X ICEB IS o b, T4 —7F7—=27 (EEFE) &
MEEN 2 FIENER SN TWS. T4 —7 7 == TOFEEZFIAL, A~— 74 TARIOETS4E
ZEE L, PR BB HEOHEREROFEHEOKL H RETND.

T4 =TT == TR TR T = X, EEOS—ATEISFHENTEY, Yu% EED
DODHHTETNAD.

1.2 F4—F5—=4

T4—7T7—=7 FEFE) [, EBEEE I 0EOFEO—DThS. T4 —7 7
—= U 7 E TR T A8k TAARSELIE) 7 EOn B CRERRELEZFT TS, iz, THE
BEEFk) LW I, WO T RGOS (ILSVRC) THEA, HRO 7 7 A3 MEOREE) M)
ELTWB[1]. 2012 L ARBICEBABICY LTT 4 —7 7 —=V 7 RHVGR, HETT —F
216, 4% &, 2011 4D 25.8% & T 9.4 KA > R, EBHI12, =2— 7%y hT—7 OZJE{L
ITiEA, 2015 AFITITHBI=T —=R 3. 57%E TR L, b FNOIREZB A HROKEE L 7e-72[1].

1.3F4—TF5—=0J12&B5—LA]

TA—TT—= 7%, BROE) HERREGEOSBFIEDN TSN, ZAbicE EELT,
2016 £ 3 HIZEEO® ~ v 7LV EM IS, T4 —TF T —=2 7 & HAW= TAlphaGo (T 7 7
) BRI (4180 L7=[10]. % AlphaGo 2358 L22E L MEIEN D FETIER T 5. [1]. 3k
Bk, TR AT T, MENCEI 2 5252 LT, TOEELEMILL, HOLZOTEERE TS
LW FEFETHD.

FHECCIE, AR —RRDY 2008 4EICBA%E A L 7= ponanza[20] 326 F Hivsd. AMARO T v bxtmt 50F
HLEE T #E Tl ponanza 1355 2 [0 (2013 4F) [15], #5 3 [m] (2014 4F) [16], FINAL (2015 4F) [17]12%
B, WINbBRIZIOTWD. 72, 2016 4E[18] & 2017 AEOEEFR[19] TH A ZILD TN D

.43 4

(a7 b4 (ENFEMEEN)] L1, TAUVBEFNOR— R —AT, fit6E, #7505
R D IEL AN — FIZ, HEEITREOHEROZ AN TV E, SEICHE, B Bl 4o LTt
REFPBHIZR D5 —LThsb. [4]

a7 b 41%, JDAllen IZEVEFUHETHD Z EMNRINTNSH3]. 1988 4F, J.D.Allen I
XY A DOFEEMHTEITV, WkETFEHT o756, 21 FCERENPBSZ L 2R Lz, [UEIL,
Victor Allis HRIEROMEHT 21T\, [UHSamIciE L T\ 5 [4].

%7 b 4 DBEFED ALIZIE, Connect 4 Solver [12]72 7238 % . Pascal Pons 23ERL L 7= Connect
4 Solver 1%, 7177 « R=ZENRHWSNTWS. Connect 4 Solver %, #HIFEHAHBEA DR
W R T £ CHRF TR T A ENFRETH Y, RKEFET O EMNTE S, - T, Connect
4 Solver IFEFROMLTHDL, BFCULEFNREFLITEROVRYBELOZENTES.

1.5 AHRD B

AW TIZaR 7 AT, TA4—T 77—V INSHTE D0 EREIET 5.
L3IFETHkR_I=L By, T4 —FTF—= FIHE, %SOy —40 Al THOORTWS, Zh b

DY — MR ZERIDIEF TR E WD, R O SEHEAE DORER O FIE TIIREMAIISE DAL,
—7F5, BIEiCHlR~_7-10 2227 F41%, J.D.Allen ICX VW EFUHETHL Z LRI NTVS[3].
(237 b4 1B THECTOBIBIIRKA 718 LNELS, 18- Tn P E TG A O RmEKILE~
TMEDTHY, KON HIUTETAIC L KlEfF A5 2 LN TE D, 2 CTAFFETIE, =
X7 N4 OXIBRBREOD N — A THERARNIARTCT 4 —T T == I RERE DD
MERREET 5.

1.6 ZHMEE DAL

AFEOHERITZLLFO@Y ThHDH., £TE 2 BTAMIEONRTHDLaAFRT k4 12O TRRD.
W3 ETIIT A — T T — = T TEEEIT O OIS THER L=t 7 1 75 A2 T
BN, FABCTIEIT AT T == T EHNZaRT F4ALIZOWTHRARD. KEICHE 5 3 T,
L% OOV TIRA D,

2 axs k4

ARETIE, 217 b 4ITONTHERD,

ax7 b4, |ECSLTONME B, MT7AICHkEnZ~2 (g, Rat®Eaoa s Ho
AvE—FTOXAIZANTVE, FHFELYEITHE, 8, RonTng 4 v A Il 3B H
EWIF—LTHD[4].

55— BRITBEONY EHA, IR 7 4 OEREZ T L, K23, 41264 B & OBEHE %
RT. FH A, B IR T LD IEERED B ToH TN 5.

o1

IS

w

—

@)

‘9000000
0] z 3 4 0 6

K 1=x7 b 40BE

‘0000000
‘00 0000
00 ©

2 fEDFIT DRI

- 9000000
- 9000000
‘9000000

90000000
09000000
T Y

0 1 Z

X 3 BRDFITDEEFIF]

B 4 7D DFTOREFIG

ax7 M AORHEE LT, BENEEIIL > TOWDIRIETIT S 72, M EITEBISRRDD, #Hith

MIXEI OB T, —FFOEO~AE LI, BEICAS> T DEOE ELMEIT RN ENET S
na. 72k, HEWHRTH) EEUTF) L0 IHEREEN D, FE (8 AounThmns@Eel
e L CUE~TREE) L FRFRAGRRIBL ERD.

3 WEAEFAIOTSLOER

TU—TT—= 7 Taxy b4DA BERT A0I1E, FEEITO RO OMBHEFENLETH
5. FZTAMIETIE, HETFE LTHWAZ N TEL2axs M4 07a /T L5 &/ERKT 5. Keith
Galli KD a7 M4t ANBH Y v 7 7 LAEBBIT/ERK.

3.1 HEMFATOT S LOBE

T =TT VR ACTEE ST HEE, EPIRTREE T CEE AT, FEADIC R
THERAIF 23 L OV BERDH D, 22 TR T, B0 4 SORM & f\ 5 5T
M70 2T DEAFT 5.

o WK1 : TUA L
S 1 071 7T AL, FITCAHAEIICTHIULT VX DI HOHRETH 5.

o HEWZ 2 : U —FHRICHEFICHE D
RS 2 D7 a7 T AL, BHMN3OWRTNT, e 1 ~vATHA (V—F) L725IRET, 7
BOOWRDEZ — 2 THTHYRAITLHHE, LTZ20ORfoMEETHD. P TH A
DIFAE L7 WAL, BIK 1 S [FERIC T v & AITHT .

o BEME 3 : FHTO U —FREIEE
HEES 3 07 7T Ak, HRES 2 ERERICHDIZ U —F 0N EH o TR Y OB CH~ AIZEIT D
LAIz o~ AEL . ENUNOSE, HEIZY —FRE»-TEY, #HFOKROFHETHT
N THYAZETDGE, MTFOBLEESTEDIZFDOAZRICEL. ZNHDEREDEDL
HIZH Y TLE S RWEGE I 1 & R 7 v & L2,

o HENE 4 FRIIERETEIO
LAFTIRAHEY, ax7 MM IEIEEMITENTREY, FREOKRETFTNHFHL TN,
g 4D 07T ML, BAIO 4 FEHETIIHTER T T~ AL - T, HE\ET LD~ AT
DENIERTH S, 5 F HLARRILERNE 3 & RIERIZFT .
BEME 4 TR A RETOFMEZR 1I1RT.

- 9000000
- 9000000
‘9000000

‘9000000

9000000

9000000
0 1 2 o 4 0 6

X 5BEO~AES

K 1 BHD 4 FOREF

(B, %] ~2FFIIX 158
EF (1FRH) #%F 2FH) H£F B FRH) #%F (4FH)
[0, 0] [0, 3] (o, 1], [o, 2], [0, 41, [0, 5] [1,3]
[1,0] [0, 4]
[1,3] [2,3]
[0, 6] [0, 2]
[0, 1] [0, 2] [0, 0], [0, 4], [0, 5] [1,2]
(1, 1] [2,1]
[1,2] [2, 2]
[0, 3] [1, 3]
[0, 6] [0, 5]
[0, 2] [0, 3] (0, 0], [o, 1], [0, 41, [0, 5], [0,6] | [1,3]
[1,2] [2, 2]
[1,3] [2, 3]
[0, 3] [1,3] [0, 0], [0, 11, [0, 4] [0, 2]
[0, 21, [0, 5], [0, 6] [0, 4]
[2,3] [3, 3]
[0, 4] [0, 3] (o, 0], [o, 1], [0, 21, [0, 5], [0,6] | [1,3]
[1,3] [2,3]
(1, 4] (2, 4]
[0, 5] [0, 4] [0, 11, [0, 21, [0, 6] (1, 4]
[0, 0] [0, 1]
[0, 3] [1,3]
(1, 4] [2, 4]
[1,5] [2,5]
[0, 6] [0, 3] (o, 1], [o, 2], [0, 41, [0, 5] [1,3]
[0, 0] [0, 4]
[1,3] [2, 3]
[1,6] [0, 2]

3.2 }EMAFRAITOTS L
A2 T, Python ZHWTxHkFETFH 7 1 77 A &AER L2, ATERICARNIZE THERL L 72 Xk FE
FH v 7T LEmT.
VAT IZAMIFE TYERL L 72 8B R 7 e 777 MW TR 4 5.
¢ connect4aRandomAlpy
3.1 HICTHRARZMIE 1 DT 7T A THD. ~AOFBHHIL, BETFHAORNLT X
LZHTD. £ 212 connext4aRondom.py D A Y v RERT,

2 connect4aRondomAl.py ® A Y v K

create_board() N— FERK

drop_piece(board, col, row, piece) av&§o

is_varid_location(board, row) FOINRETa~<wTHE - TWHRNM)N
get_next_open_row(board) ZDOHTH THYADH Tl FE A IKT

¢ connect4aReachAl.py
3.1 Hi TR 2 DT u T A THD. ~ZADFBHIE, U —FOREET, 22 ORD
Y ATHAT 2RFIT ST ZO~ R 2. ZOFMBLSTIIHEREE 1 O#E Y IZFT.
connect4aReachAl (%, connect4ARondomAlLpy & RIEEIZHE 2 IZRT AV v REFFO.
e connect4aReachAl2.py
31EITHRARIZEME 3 DT e T A THD. ~AOfTHIIE, HERAHE 1 ~ATHHT
L, FFEOBHLEAMIET 272012, 2O~ ATEITEL . ZOFMLSTITHENE 2 O
DIZHTD. connext4aRondomAl2.py %, & 2 DAY v RIZIMATER 3 DAY v RaFf
D,

#& 3 connect4aReachAl.py M X Y v K

| reach_1(board) | FFED) —FfeR |
e connect4aFirstFourAl.py

31 HICIRARIZEERE 3 DT v /T A ThDH. ~ADHLEIL, YO 4F 252—r) F

TIHMHENT o 7o~ AITH L Tl EF TxHE, BRI 3 OM b (24>,

connectdaFirstFourAl.py (%, & 2B LVE 3DA Y v R&FFo.

4 F4—T5—=VJERAV=a%Y +4Al

KWL T, T4 —7 T —=v T H0zax7 F4Al #1ER L, BIE CRZEATH 70 7
FEEHNWCTEREIEDLTETHD.

At cixllor 4 —7 7 —=v 7% =B~ Al 2252, Python # f{\vT=x7 b4
Al ZERT 5.

4.1Python DA VR F—ILE L URIBEEHRDETE

AWFFETIX Python O/3N— 3 13 2.7.15 C, 2O &2 SBITREAROREEITo72. BLF
\CBRIE AR ORE FIEZ =T .
@ Anaconda B¢ main (2 Chainer (\X—Y 32 1.16.0) A A h—/L 95,
@ Qi T 7 7 7HEiEHIZ matplotlib (\X—Y 32 1.5.3) A A =17 5.
@ httpsi//code.google.com/archive/p/rl-glue-ext/downloads ®H 1 ~ZdH 5
rlglue-3.04.tar.gz # ¥ V> u— K95,
@ https://code.google.com/archive/p/rl-glue-ext/downloads?page=2 ®H A ~MZH D
python-codec-2.02.tar.gz # ¥ v > n— K435,
Mac O % — X F)V CTEITEIT - 7223 Runtime Error: CUDA environment is not correctly set up”/3
FREN, RUTAT 720, WEIZIIES Do T,

4.2 REL-MER
AEI T, ax7 F4Al EFTHRHCRAE LRSS W TR S,

4.1 Tk _7=@ Y, FEITHHIZ RuntimeError:CUDA environment is not correctly set up & %7
SNTEITTE o7z,

ZEVMMEITEIRE T COER L H Y, SEEROLIFS, IITo720, AL I7—NERRIN
el 5. JRKIIAHTSH S.

® Chainer, RL-Glue %% —E7 A VA h—/LL7ZDL, $ 9 —FA A F—1LT 5.

o [o=RWRDOT 4 —77—= 7 OIEHER

5 R - SHROEE

AR TCIZT 4 —F T —= T2 AW —A Al Z 3R T 4 THAEMDPERIET A TET
bHote. LrL, FERAWALRT T —ORBTIERT DIZIZEL RN, BHRORELEZ 2T
72 720N ONREHOBEICEToN5.

HEE

AIFTEHAT D\ T > THKMERERT D DBIRICET 2RO L ¥ o AR ER ORI Pk~ 72
THRYUAZIT W EE L, DO EEELET.

2% 3R

[1] BEE—, mEsk, FET 1 —7T7—=7, F—2nrt (2016).

[2] RS, Y uiHAES Deep Learning — Python TRST 4 — 7 7 —=0 OB L RE, 47
A V=¥) (2016)

[3] James Dow Allen, The Complete Book of Connect 4, Puzzle Wright Press (2010)

[4] Victor Allis, A Knowledge—based Approach of Connect—Four, The Game is Solved: White Wins,
Master Thesis, Department of Mathematics and Computer Science Vrije Universiteit (1988)
http://www. informatik. uni—trier. de/ fernau/DSL0607/Masterthesis—Viergewinnt. pdf

[5] Yoshiaki Yamaguchi, Kazunori Yamaguchi, Tetsuro Tanaka, and Tomoyuki Kaneko, Infinite
Connect—-Four Is Solved: Draw, Advances in Computer Games, pp. 208-219 (2011)

[6] Yoshiaki Yamaguchi, Kazunori Yamaguchi, Tetsuro Tanaka, Cylinder-Infinite-Connect—Four
except for Widths 2, 6, and 11 is Solved: Drawn, The 8th International Conference on
Computers and Games (2013).

[7] Yoshiaki Yamaguchi, Todd W. Neller, First Player’s Cannot-Lose Strategies for Cylinder—
Infinite—Connect—Four with Widths 2 and 6, Advances in Computer Games, pp.113-121 (2015)
http://cs. gettysburg. edu/ tneller/papers/acg2015. pdf

[8] E&fzd, #EL Al @ T 77 ENDIAE 72Kk, HIHE, (2018).

[9] AHERHEC, TA7 73T AMICHE Clzon, <A &, XX MET7—X, (2016).

[10] 7 —Z VAT T4 B 1 Wy 3 EOAED. 7ot REBEa O], ==2—X A v
F, 2016 423 A 6 H, HTFI LM, (2016) https://newswitch. jp/p/3971

[11] James Dow Allen, Expert Play in Connect-Four, (1990), http://tromp. github. io/c4. html

[12] Pascal Pons, Connect 4 Solver. https://connect4. gamesolver. org/

[13] Pascal Pons. Solving Connect 4 : How To Build A Perfect Al (2019)
http://blog. gamesolver. org/

[14] [RIZEEHY, HRERO “FE” —a B — 2y 7 FEEE —REAIS A - A

— k& A (HT M) 1, 2014 # 4 H 25 H, nok 6 x, (2014)
http://nlab. itmedia. co. jp/nl/articles/1404/25/news016. html

[15] T2 2 [E ff # & £ 8, L &K A, H oA R B E B (2013) ,
https://www. shogi. or. jp/match/denou/2/index. html

[16] I3 3 [l ff Bt & £ 8& /L & B & |, oA R #t#E B3, (2014) ,
https://www. shogi. or. jp/match/denou/3/index. html

[17] T % #t %8 £ ¥ FINAL / H & B & |, A R #oE | (2015)
https://www. shogi. or. jp/match/denou/4/index. html

(18] I % 1 #H & £ #& = F B A J , B A& 8 d 3|, (2016) ,
https://www. shogi. or. jp/match/denou/01/index. html

[19] T & £ ¥ | B8 [B AR £ 8|, HoA fF A B, (2017) ,

https://www. shogi. or. jp/match/denou/
[20] 1A=L, ATHEEIZEDLIIZLT BN 2002 KR AT AT U ORFEE MR
Bz LB - g - b EORYE, ¥4 vEL M, (2017)
[21] Connect4-Python/connect4. py at master -+ KeithGalli/Connect4-Python « GitHub, GitHub, (2017),
https://github. com/KeithGalli/Connect4-Python/blob/master/connect4. py

10

VA Syl B/ N

AR TIER LT 0 ST LD —AT 7 A VD—E% LT IR
o connect4aRandomAl. py

import numpy as np

import random

COLUMN_COUNT = 6
ROW_COUNT = 7

#AR — RIYERK

def create_board():
board = np. zeros ((6, 7))
return board

Ha~&4$TO
def drop_piece(board, col, row, piece):

board[col] [row] = piece

§Z20FNL, a~N—F LOERFE THE > TR0,
def is_valid_location(board, row):

return board[5] [row] == 0

HEDHTH TAHYADI L, b FTOEO~AZIKT
def get_next_open_row(board, row):
for ¢ in range (COLUMN_COUNT) :
if board[c][row] == 0:

return c

def print_board (board) :
print (np. flip (board, 0))

HIRZE OFIE
def winning_move (board, piece):
#3 3 TRE LD
for r in range (ROW_COUNT-3) :
for ¢ in range (COLUMN_COUNT) :
if board[c][r] == piece and board[c][r+1] == piece and board[c] [r+2]
== piece and board[c][r+3] == piece:

return True

H¥ T CWRAE LT
for r in range (ROW_COUNT) :
for ¢ in range (COLUMN_COUNT-3) :
if board[c] [r] == piece and board[c+1][r] == piece and board[c+2] [r]
== piece and board[c+3][r] == piece:

return True

11

HERE LRV FF ATRE LT
for r in range (ROW_COUNT-3) :
for ¢ in range (COLUMN_COUNT-3) :
if board[c][r] == piece and board[ct+l][r+1] == piece and
board[c+2] [r+2] == piece and board[c+3] [r+3] == piece:

return True

HAETE TR0 T A TRAE Licn
for r in range (ROW_COUNT-3) :
for ¢ in range(3, COLUMN_COUNT) :
if board[c][r] == piece and board[c—1][r+1] == piece and board[c—
21 [r+2] == piece and board[c-3][r+3] == piece:

return True

board = create_board ()
print_board (board)
game_over = False

turn = 0

while not game_over:
#Player 1 OF
if turn == 0:
firow = int (input ("Playerl Make Your Selection(0-6)7))
while True:
row = int (input ("Playerl Make Your Selection(0-6)”))
#if board[5][row] == 0 and -1 < row and row < 7: #PHA T T —IZ
A
if board[5] [row] == 0:
break

if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 1)
if winning_move (board, 1):
print ("PLAYER1 Wins!”)

game_over = True

#Player 2 D&
else:
while True:
row = random. randrange (7)
print ("Player2 Selected:”, row)
if board[5][row] == 0:
break

if is_valid_location(board, row):

12

col = get_next_open_row(board, row)

drop_piece (board, col, row, 2)

if winning_move (board, 2):
print ("PLAYER2 Wins!”)

game_over = True
print_board (board)

turn += 1

turn = turn % 2

o connect4aReachAl. py

import numpy as np

import random

COLUMN_COUNT = 6
ROW_COUNT = 7

#AR— FAERK

def create_board() :
board = np. zeros ((6, 7))
return board

Ha~%xio
def drop_piece(board, col, row, piece):

board[col] [row] = piece

BEDFNL, a~N—F LOERFE THE > TR0 m
def is_valid_ location(board, row):

return board[5][row] == 0

HEDHITH TAHYADI L, b FOEO~ A %KY
def get_next_open_row(board, row):
for ¢ in range (COLUMN_COUNT) :
if board[c][row] == 0:

return c

def print_board (board) :
print (np. flip (board, 0))

HIR A5 OHE
def winning_move (board, piece):
#3 3 TPRAE LT
for r in range (ROW_COUNT-3) :
for ¢ in range (COLUMN_COUNT) :

13

if board[c] [r] == piece and board[c][r+1] == piece and board[c][r+2]
== piece and board[c][r+3] == piece:

return True

H4 7T CHRE LT
for r in range (ROW_COUNT) :
for ¢ in range (COLUMN_COUNT-3) :
if board[c] [r] == piece and board[c+1][r] == piece and board[c+2] [r]
== piece and board[c+3][r] == piece:

return True

HER LY FF A TRE LT
for r in range (ROW_COUNT-3) :
for ¢ in range (COLUMN_COUNT-3) :
if board[c][r] == piece and board[ct+l][r+l] == piece and
board[c+2] [r+2] == piece and board[c+3][r+3] == piece:

return True

HERE TR0 FF ATRE L)
for r in range (ROW_COUNT-3) :
for ¢ in range (3, COLUMN_COUNT) :
if board[c][r] == piece and board[c-1][r+1] == piece and board[c-
2] [r+2] == piece and board[c-3][r+3] == piece:

return True

board = create_board ()
print_board (board)
game_over = False

turn = 0

while not game_over:
#Player 1 O
if turn == 0:
while True:
row = int(input ("Playerl Make Your Selection(0-6)”))
if board[5] [row] == 0:
break

if is_valid_location (board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 1)
if winning_move (board, 1):
print ("Playerl Wins!”)

game_over = True

#Player 2 O
else:

ta o (1 BRH~ AL DOYE D I)

14

for r in range (ROW_COUNT-3) :
if board[0][r] == 0 and board[0][r+1] == 2 and board[0][r+2] == 2 and
board[0] [r+3] == 2:

TOW = T

col =0

drop_piece(board, col, row, 2)

winning_move (board, 2)

print ("Player2 Wins!”)

game_over = True

break
elif board[0][r] == 2 and board[0][r+l1] == 0 and board[0][r+2] == 2 and
board[0] [r+3] == 2:
row = r+l
col =0

drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)

game_over = True

break
elif board[0][r] == 2 and board[0][r+1] == 2 and board[0][r+2] == 0 and
board[0] [r+3] == 2:
row = r+2
col =0

drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)

game_over = True

break
elif board[0][r] == 2 and board[0][r+1] == 2 and board[0][r+2] == 2 and
board[0] [r+3] == 0:
row = r+3
col =0

drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)

game_over = True

break
#3222 Be B LIBE)
B OHDOTADEFIZa~nd o0zl (LS 11 Bl ~ 2B ORE DI 2R T
BRI
for r in range (ROW_COUNT-3) :
for ¢ in range (1, COLUMN_COUNT) :
if board[c][r] == 0 and board[c][r+l1] == 2 and board[c][r+2] == 2 and
board[c] [r+3] == 2 and board[c-1][r] != 0:
row = r
col = ¢

drop_piece(board, col, row, 2)

15

winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif boardlc][r] == 2 and board[c][r+1] == 0 and board[c][r+2] == 2 and
board[c] [r+3] == 2 and board[c-1][r+1] != 0:
row = r+l
col = ¢
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and board[c][r+1] == 2 and board[c][r+2] == 0 and
board[c][r+3] == 2 and board[c-1][r+2] != 0:
row = r+2
col = ¢
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif boardlc][r] == 2 and board[c][r+1] == 2 and board[c][r+2] == 2 and
board[c][r+3] == 0 and board[c-1][r+3] != 0:
row = r+3
col = ¢
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break

827
for r in range (ROW_COUNT) :
for ¢ in range (COLUMN_COUNT-3) :

if board[c][r] == 2 and board[c+1][r] == 2 and board[c+2][r] == 2 and
board[c+3] [r] == O:
row = r
col = ¢+3

drop_piece(board, col, row, 2)
winning_move (board, 2)

print ("Player2 Wins!”)
game_over = True

break

HER LD FF 2 (1 Bt B~ A& DRAE D H)
for r in range (ROW_COUNT-3) :
if board[0][r] == 0 and board[1][r+1] == 2 and board[2][r+2] == 2 and

16

board[3] [r+3] == 2:
TOW = T
col =0
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)

game_over = True

break
elif board[0][r] == 2 and board[1][r+l1] == 0 and board[2][r+2] == 2 and
board[3] [r+3] == 2 and board[0][r+1] != O:
row = r+l
col =1

drop_piece (board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)

game_over = True

break
elif board[0][r] == 2 and board[1][r+1] == 2 and board[2][r+2] == 0 and
board[3][r+3] == 2 and board[1][r+2] != 0:
row = r+2
col = 2

drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)

game_over = True

break
elif board[0][r] == 2 and board[1][r+l1] == 2 and board[2][r+2] == 2 and
board[3] [r+3] == 0 and board[2][r+3] != 0:
row = r+3
col =3

drop_piece(board, col, row, 2)
winning_move (board, 2)

print ("Player2 Wins!”)
game_over = True

break

#AE B30 A (1 Be B~ AfE A LIS
for r in range (ROW_COUNT-3) :
for ¢ in range (1, COLUMN_COUNT-3) :
if board[c][r] == 0 and board[c+1][r+1] == 2 and board[c+2][r+2] == 2 and
board[c+3][r+3] == 2 and board[c-1][r] != 0:
TOW = T
col = ¢
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True

break

17

elif board[c][r] == 2 and board[c+1][r+1] == 0 and board[c+2][r+2] == 2 and
board[c+3][r+3] == 2 and board[c][r+1] != 0:
row = r+l
col = ¢+l
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and boardl[c+1][r+1] == 2 and board[c+2] [r+2] == 0 and
board[c+3][r+3] == 2 and board[c+1][r+2] != 0:
row = r+2
col = ct+2
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and board[ct+1][r+1] == 2 and board[c+2][r+2] == 2 and
board[c+3][r+3] == 0 and board[c+2] [r+3] != 0:
row = r+3
col = ¢+3
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True

break

HER TR0 7T A (1 BEH ~ A& HDIRE D H)
for r in range (ROW_COUNT-3) :

if board[3][r] == 0 and board[2][r+1] == 2 and board[1][r+2] == 2 and
board[0][r+3] == 2 and board[2][r] != 0:
TOW = T
col =3

drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)

game_over = True

break
elif board[3][r] == 2 and board[2][r+l1] == 0 and board[1][r+2] == 2 and
board[0][r+3] == 2 and board[1][r+1] != 0:
row = r+l
col = 2

drop_piece(board, col, row, 2)
winning_move (board, 2)

print ("Player2 Wins!”)
game_over = True

break

18

elif board[3][r] == 2 and board[2][r+l1] == 2 and board[1][r+2] == 0 and
board[0] [r+3] == 2 and board[0][r+2] != 0:
row = r+2
col =1
drop_piece (board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)

game_over = True

break
elif board[3][r] == 2 and board[2][r+1] == 2 and board[1][r+2] == 2 and
board[0] [r+3] == 0:
row = r+3
col =0

drop_piece(board, col, row, 2)
winning_move (board, 2)

print ("Player2 Wins!”)
game_over = True

break

HATE T 77 A (1 BER < A& H LIS
for r in range (ROW_COUNT-3) :
for ¢ in range (4, COLUMN_COUNT) :
if board[c][r] == 0 and board[c-1][r+1] == 2 and board[c-2][r+2] == 2 and
board[c-3][r+3] == 2 and board[c-1][r] != 0:
row = r
col = ¢
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and board[c-1][r+1] == 0 and board[c-2][r+2] == 2 and
board[c-3][r+3] == 2 and board[c-2][r+1] != 0:
row = r+l
col = c-1
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and board[c-1][r+1] == 2 and board[c-2][r+2] == 0 and
board[c-3][r+3] == 2 and board[c-3] [r+2] != 0:
row = r+2
col = ¢—2
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)

game_over = True

19

break
elif board[c][r] == 2 and boardlc-1][r+1] == 2 and board[c-2][r+2] == 2 and

board[c-3][r+3] == 0 and board[c—4][r+3] != 0:

row = r+3

col = ¢-3

drop_piece(board, col, row, 2)

winning_move (board, 2)

print ("Player2 Wins!”)

game_over = True

break

if not winning _move (board, 2):
BHR T CHIELUSME T & 2

while True:

row = random. randrange (7)

print ("Player2 Selected:”, row)

if board[5][row] == 0:

break

if is_valid_location(board, row):

col = get_next_open_row(board, row)

drop_piece(board, col, row, 2)

if reach_move (board, 2) and not winning move (board, 2):
print ("PLAYER2 Reach”)

print_board (board)

turn += 1
turn = turn % 2

o connect4aReachAI2. py

import numpy as np

import random

COLUMN_COUNT = 6
ROW_COUNT = 7

AR — RYERL
def create_board():
board = np. zeros ((6, 7))

return board

Ha~xfIo
def drop_piece(board, col, row, piece):

board[col] [row] = piece

20

BFOFINL, a~Bn—F FOERFE THE > TR
def is_valid location(board, row):
return board[5][row] == 0

HEDHITH TAHYADI L, kb FOEO~AZIKT
def get_next_open_row (board, row):
for ¢ in range (COLUMN_COUNT) :
if board[c][row] == 0:

return c

def print_board (board) :
print (np. flip (board, 0))

#R G OHIE
def winning_move (board, piece):
#a 2 TYRAE LT
for r in range (ROW_COUNT-3) :
for ¢ in range (COLUMN_COUNT) :
if board[c] [r] == piece and board[c][r+1] == piece and board[c][r+2]
== piece and board[c][r+3] == piece:

return True

#E T CUAE LT
for r in range (ROW_COUNT) :
for ¢ in range (COLUMN_COUNT-3) :
if board[c][r] == piece and board[c+1][r] == piece and board[c+2] [r]
== piece and board[c+3][r] == piece:

return True

HATE B0 0 A TRAE Licn
for r in range (ROW_COUNT-3) :
for ¢ in range (COLUMN_COUNT-3) :
if board[c][r] == piece and board[c+l][r+l] == piece and
board[c+2] [r+2] == piece and board[c+3][r+3] == piece:

return True

HERE TRV FFATRE L)
for r in range (ROW_COUNT-3) :
for ¢ in range (3, COLUMN_COUNT) :
if board[c][r] == piece and board[c-1][r+1] == piece and board[c-
2] [r+2] == piece and board[c—3] [r+3] == piece:

return True

def reach_1(board) :
BHFEO U —F R
fg a2 1 BEHOA
for r in range (ROW_COUNT-3) :

21

if board[0][r] == 0 and board[0][r+1] == 1 and board[0] [r+2] == 1 and board[0] [r+3]

return True
elif board[0][r] == 1 and board[0][r+1] == 0 and board[0][r+2] == 1 and board[0] [r+3]

return True
elif board[0][r] == 1 and board[0][r+1] == 1 and board[0][r+2] == 0 and board[0] [r+3]

return True
elif board[0][r] == 1 and board[0][r+1] == 1 and board[0][r+2] == 1 and board[0] [r+3]

return True

#a 22 BEHDIRE
for r in range (ROW_COUNT-3) :
for ¢ in range (1, COLUMN_COUNT) :
if board[c][r] == 0 and board[c][r+1] == 1 and board[c][r+2] == 1 and
board[c] [r+3] == 1 and board[c-1][r] != 0:
return True
elif board[c][r] == 1 and board[c][r+1] == 0 and board[c][r+2] == 1 and
board[c][r+3] == 1 and board[c-1][r+1] != 0:
return True
elif board[c][r] == 1 and board[c][r+1] == 1 and board[c][r+2] == 0 and
board[c][r+3] == 1 and board[c-1][r+2] != 0:
return True
elif boardlc][r] == 1 and board[c][r+1] == 1 and board[c][r+2] == 1 and
board[c][r+3] == 0 and board[c-1][r+3] != 0:
return True

Y
for r in range (ROW_COUNT) :
for ¢ in range (COLUMN_COUNT-3) :
if board[c][r] == 1 and board[ct1][r] == 1 and board[c+2][r] == 1 and
board[c+3] [r] == O:

return True

#ATE L3 FF A (1 BH~ AEHDTH)
for r in range (ROW_COUNT-3) :
if board[0][r] == 0 and board[1][r+1] == 1 and board[2][r+2] == 1 and board[3][r+3]
== 1:
return True
elif board[0][r] == 1 and board[1][r+1] == 0 and board[2] [r+2] == 1 and board[3] [r+3]
== 1 and board[0][r+1] != 0:
return True
elif board[0][r] == 1 and board[1][r+1] == 1 and board[2] [r+2] == 0 and board[3] [r+3]
== 1 and board[1][r+2] != 0:
return True
elif board[0][r] == 1 and board[1][r+1] == 1 and board[2] [r+2] == 1 and board[3] [r+3]

22

== 0 and board[2] [r+3] != 0:

return True

BAJH 230 FF 4 (1 BeH ~ AT LIAM)
for r in range (ROW_COUNT-3) :
for ¢ in range (1, COLUMN_COUNT-3) :
if board[c][r] == 0 and board[c+1][r+1] == 1 and board[c+2][r+2] == 1 and
board[c+3][r+3] == 1 and board[c-1][r] != 0:
return True
elif board[c][r] == 1 and board[c+l][r+1] == 0 and board[c+2][r+2] == and
board[c+3][r+3] == 1 and board[c][r+1] != 0:
return True
elif board[c][r] == 1 and board[c+1][r+1] == 1 and board[c+2][r+2] == 0 and
board[c+3][r+3] == 1 and board[c+1][r+2] != 0:
return True
elif board[c][r] == 1 and board[c+1][r+1] == 1 and board[c+2][r+2] == and
board[c+3][r+3] == 0 and board[c+2][r+3] != 0:

return True

BATH T30 FF 4 (1 B H ~ AR D 72)
for r in range (ROW_COUNT-3) :
if board[3][r] == 0 and board[2][r+1] == 1 and board[1][r+2] == 1 and board[0] [r+3]
== 1 and board[2][r] != 0:
return True
elif board[3][r] == 1 and board[2] [r+1] == 0 and board[1] [r+2] == 1 and board[0] [r+3]
== 1 and board[1][r+1] != 0:
return True
elif board[3][r] == 1 and board[2][r+1] == 1 and board[1] [r+2] == 0 and board[0] [r+3]
== 1 and board[0][r+2] != 0:
return True
elif board[3][r] == 2 and board[2] [r+1] == 2 and board[1] [r+2] == 2 and board[0] [r+3]

return True

BHE TR0 7 2 (1 BB~ A& AL
for r in range (ROW_COUNT-3) :
for ¢ in range (4, COLUMN_COUNT) :
if board[c][r] == 0 and board[c-1] [r+1] == 1 and board[c-2] [r+2] == 1 and board[c-
3][r+3] == 1 and board[c-1][r] != O:
return True
elif boardlc][r] == 1 and board[c-1][r+1] == 0 and board[c-2][r+2] == 1 and
board[c-3][r+3] == 1 and board[c-2] [r+1] != 0:
return True
elif board[c][r] == 1 and board[c-1][r+l1] == 1 and board[c-2][r+2] == 0 and
board[c-3][r+3] == 1 and board[c-3] [r+2] != 0:
return True
elif board[c][r] == 1 and board[c-1][r+l1] == 1 and board[c-2][r+2] == 1 and
board[c-3][r+3] == 0 and board[c—4][r+3] != 0:

23

return True

board = create_board()
print_board (board)
game_over = False

turn = 0

while not game_over:
#Player 1 OF
if turn ==
while True:
row = int (input ("Playerl Make Your Selection(0-6)”))
if board[5][row] == 0:
break

if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 1)
if winning_move (board, 1):
print ("Playerl Wins!”)
game_over = True
break

#Player 2 O
else:
B3 = (1 Bt H ~ A HDOPAE D7)
for r in range (ROW_COUNT-3) :
if board[0][r] == 0 and board[0][r+1] == 2 and board[0][r+2] == 2 and
board[0] [r+3] == 2:
TOW = T
col =0
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)

game_over = True

break
elif board[0][r] == 2 and board[0][r+l] == 0 and board[0][r+2] == 2 and
board[0] [r+3] == 2:
row = r+l
col =0

drop_piece (board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[0][r] == 2 and board[0][r+1] == 2 and board[0][r+2] == 0 and
board[0] [r+3] == 2:

24

row = r+2

col =0

drop_piece(board, col, row, 2)
winning_move (board, 2)

print ("Player2 Wins!”)

game_over = True

break
elif board[0][r] == 2 and board[0][r+l1] == 2 and board[0][r+2] == 2 and
board[0] [r+3] == 0:
row = r+3
col =0

drop_piece(board, col, row, 2)
winning_move (board, 2)

print ("Player2 Wins!”)
game_over = True

break

#a =2 (2 BRHLULK)
#te DHOADOETFIZa~NH0& 4l (UL 11 BE~ARHEDOREDH] ZEEWVTH

BRI
for r in range (ROW_COUNT-3) :
for ¢ in range (1, COLUMN_COUNT) :
if board[c][r] == 0 and board[c][r+l] == 2 and board[c][r+2] == 2 and
board[c][r+3] == 2 and board[c-1][r] != 0:
row = r
col = ¢

drop_piece(board, col, row, 2)

winning_move (board, 2)

print ("Player2 Wins!”)

game_over = True

break

elif board[c][r] == 2 and board[c][r+1] == 0 and board[c][r+2] == 2 and

board[c] [r+3] == 2 and board[c-1][r+1] != 0:

row = r+l

col = ¢

drop_piece(board, col, row, 2)

winning_move (board, 2)

print ("Player2 Wins!”)

game_over = True

break

elif board[c][r] == 2 and board[c][r+1] == 2 and board[c][r+2] == 0 and

board[c][r+3] == 2 and board[c-1][r+2] != 0:

row = r+2

col = ¢

drop_piece(board, col, row, 2)

winning_move (board, 2)

print ("Player2 Wins!”)

game_over = True

25

break
elif boardlc][r] == 2 and board[c][r+1] == 2 and board[c][r+2] == 2 and

board[c][r+3] == 0 and board[c-1][r+3] != 0:

row = r+3

col = ¢

drop_piece(board, col, row, 2)

winning_move (board, 2)

print ("Player2 Wins!”)

game_over = True

break

#tvertical # 7
for r in range (ROW_COUNT) :
for ¢ in range (COLUMN_COUNT-3) :

if board[c][r] == 2 and board[c+1][r] == 2 and board[c+2][r] == 2 and
board[c+3][r] == 0:
row = r
col = ¢+3

drop_piece(board, col, row, 2)
winning_move (board, 2)

print ("Player2 Wins!”)
game_over = True

break

HER LD FF 2 (1 Bt B~ A& DRAE D I)
for r in range (ROW_COUNT-3) :

if board[0][r] == 0 and board[1][r+1] == 2 and board[2][r+2] == 2 and
board[3] [r+3] == 2:
TOW = T
col =0

drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)

game_over = True

break
elif board[0][r] == 2 and board[1][r+1] == 0 and board[2][r+2] == 2 and
board[3] [r+3] == 2 and board[0][r+1] != O:
row = r+l
col =1

drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)

game_over = True

break
elif board[0][r] == 2 and board[1][r+1] == 2 and board[2][r+2] == 0 and
board[3][r+3] == 2 and board[1][r+2] != 0:
row = r+2
col = 2

26

drop_piece (board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)

game_over = True

break
elif board[0][r] == 2 and board[1][r+l1] == 2 and board[2][r+2] == 2 and
board[3] [r+3] == 0 and board[2][r+3] != 0:
row = r+3
col =3

drop_piece (board, col, row, 2)
winning_move (board, 2)

print ("Player2 Wins!”)
game_over = True

break

#ATE B30 A (1 BEH ~ A& A L)
for r in range (ROW_COUNT-3) :
for ¢ in range (1, COLUMN_COUNT-3) :
if board[c][r] == 0 and board[c+1][r+1] == 2 and board[c+2][r+2] == 2 and
board[c+3][r+3] == 2 and board[c-1][r] != 0:
TOW = T
col = ¢
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and boardl[c+1][r+1] == 0 and board[c+2][r+2] == 2 and
board[c+3][r+3] == 2 and board[c][r+1] != 0:
row = r+l
col = ¢+l
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and boardl[c+1][r+1] == 2 and board[c+2] [r+2] == 0 and
board[c+3][r+3] == 2 and board[c+1][r+2] != 0:
row = r+2
col = c+2
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and board[c+1][r+1] == 2 and board[c+2][r+2] == 2 and
board[c+3][r+3] == 0 and board[c+2] [r+3] != 0:

row = r+3

27

col = ¢+3

drop_piece(board, col, row, 2)
winning_move (board, 2)

print ("Player2 Wins!”)
game_over = True

break

HETE TR 7T A (1 BB~ A& B DOPE D H)
for r in range (ROW_COUNT-3) :

if board[3][r] == 0 and board[2][r+1] == 2 and board[1][r+2] == 2 and
board[0][r+3] == 2 and board[2][r] != 0:
Tow = T
col =3

drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)

game_over = True

break
elif board[3][r] == 2 and board[2][r+l1] == 0 and board[1][r+2] == 2 and
board[0] [r+3] == 2 and board[1][r+1] != 0:
row = r+l
col =2

drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)

game_over = True

break
elif board[3][r] == 2 and board[2][r+1] == 2 and board[1][r+2] == 0 and
board[0] [r+3] == 2 and board[0][r+2] != 0:
row = r+2
col =1

drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)

game_over = True

break
elif board[3][r] == 2 and board[2][r+1] == 2 and board[1][r+2] == 2 and
board[0] [r+3] == 0:
row = r+3
col =0

drop_piece(board, col, row, 2)
winning_move (board, 2)

print ("Player2 Wins!”)
game_over = True

break

BAJE T30 77 2 (1 Be B~ A& AL
for r in range (ROW_COUNT-3) :

28

for ¢ in range (4, COLUMN_COUNT) :
if board[c][r] == 0 and board[c-1][r+1] == 2 and board[c-2][r+2] == 2 and
board[c-3][r+3] == 2 and board[c-1][r] != 0:
Tow = T
col = ¢
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and board[c-1][r+1] == 0 and board[c-2][r+2] == 2 and
board[c-3][r+3] == 2 and board[c-2] [r+1] != 0:
row = r+l
col = c-1
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and boardl[c-1][r+1] == 2 and board[c-2][r+2] == 0 and
board[c-3][r+3] == 2 and board[c-3] [r+2] != 0:
row = r+2
col = ¢—2
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and boardlc-1][r+1] == 2 and board[c-2] [r+2] == 2 and
board[c-3][r+3] == 0 and board[c—4][r+3] != 0:
row = r+3
col = ¢-3
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True

break

if not winning move (board, 2) and reach_1(board): #fHF U —F T L=, Sl
WTRE<
ta = 1 BRHDOH
for r in range (ROW_COUNT-3) :
if board[0][r] == 0 and board[0][r+1] == 1 and board[0][r+2] == 1 and
board[0] [r+3] == 1:
TOW = T
if is_valid_location(board, row):
col = get_next_open_row(board, row)

drop_piece (board, col, row, 2)

29

break
elif board[0][r] == 1 and board[0][r+1] == 0 and board[0][r+2] == 1 and
board[0] [r+3] == 1:
row = r+l
if is_valid location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 2)
break
elif board[0][r] == 1 and board[0][r+1] == 1 and board[0][r+2] == 0 and
board[0] [r+3] == 1:
row = r+2
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 2)
break
elif board[0][r] == 1 and board[0][r+1] == 1 and board[0][r+2] == 1 and
board[0] [r+3] == 0:
row = r+3
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 2)
break

#a 2 2 BrHLARE
for r in range (ROW_COUNT-3) :
for ¢ in range (1, COLUMN_COUNT) :
if board[c][r] == 0 and board[c][r+1] == 1 and board[c][r+2] == 1 and
board[c] [r+3] == 1 and board[c-1][r] != 0:
Tow = T
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[c][r] == 1 and board[c][r+1] == 0 and board[c][r+2] == 1 and
board[c][r+3] == 1 and board[c-1][r+1] != 0:
row = r+l
if is_valid_location(board, row):
col = get_next_open_row(board, row)

drop_piece(board, col, row, 2)

break
elif board[c][r] == 1 and board[c][r+1] == 1 and board[c][r+2] == 0 and
board[c] [r+3] == 1 and board[c—1] [r+2] != 0:
row = r+2

if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[c][r] == 1 and board[c][r+1] == 1 and board[c][r+2] == 1 and

30

board[c] [r+3] == 0 and board[c-1][r+3] != 0:
row = r+3
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break

3
for r in range (ROW_COUNT) :
for ¢ in range (COLUMN_COUNT-3) :
if board[c][r] == 1 and board[c+1][r] == 1 and board[c+2][r] == 1 and
board[c+3][r] == 0:
Tow = T
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break

#ETE B0 A (1 BB~ A& HDF)
for r in range (ROW_COUNT-3) :
if board[0][r] == 0 and board[1][r+l1] == 1 and board[2][r+2] == 1 and
board[3] [r+3] == 1:
Tow = T
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 2)
break
elif board[0][r] == 1 and board[1][r+1] == 0 and board[2][r+2] == 1 and
board[3] [r+3] == 1 and board[0][r+1] != 0:
row = r+l
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 2)
break
elif board[0][r] == 1 and board[1][r+1] == 1 and board[2][r+2] == 0 and
board[3] [r+3] == 1 and board[1][r+2] != 0:
row = r+2
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 2)
break
elif board[0][r] == 1 and board[1][r+1] == 1 and board[2][r+2] == 1 and
board[3][r+3] == 0 and board[2][r+3] != 0:
row = r+3
if is_valid_location (board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 2)
break

31

#ATE B30 A (1 BB~ A& A L)
for r in range (ROW_COUNT-3) :
for ¢ in range (1, COLUMN_COUNT-3) :
if board[c][r] == 0 and boardlc+1][r+1] == 1 and board[c+2][r+2] ==
and board[c+3][r+3] == 1 and board[c-1][r] != 0:
row = Tt
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[c][r] == 1 and board[c+1][r+1] == 0 and board[c+2] [r+2] ==
and board[c+3] [r+3] == 1 and board[c][r+1] != 0:
row = r+l
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[c][r] == 1 and board[c+1][r+1] == 1 and board[c+2][r+2] == 0
and board[c+3] [r+3] == 1 and board[c+1][r+2] != 0:
row = r+2
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[c][r] == 1 and board[c+1][r+1] == 1 and board[c+2][r+2] ==
and board[c+3][r+3] == 0 and board[c+2][r+3] != 0:
row = r+3
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break

EERE TR0 A (BB~ RAfEHDIHR)
for r in range (ROW_COUNT-3) :

if board[3][r] == 0 and board[2][r+1] == 1 and board[1][r+2] == 1 and
board[0] [r+3] == 1 and board[2][r] != 0:
row = r

if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 2)
break

elif board[3][r] == 1 and board[2][r+1] == 0 and board[1][r+2] == 1 and
board[0] [r+3] == 1 and board[1][r] != 0:

row = r+l

if is_valid_location(board, row):
col = get_next_open_row(board, row)

drop_piece (board, col, row, 2)

32

break
elif board[3][r] == 1 and board[2][r+1] == 1 and board[1][r+2] == 0 and
board[0][r+3] == 1 and board[0][r+2] != 0:
row = r+2
if is_valid location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 2)
break
elif board[3][r] == 2 and board[2][r+1] == 2 and board[1][r+2] == 2 and
board[0] [r+3] == 0:
row = r+3
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 2)
break

BETR TR0 FF 2 (1 Bt H~ A& B LIS
for r in range (ROW_COUNT-3) :
for ¢ in range (4, COLUMN_COUNT) :
if board[c][r] == 0 and boardl[c-1][r+1] == 1 and board[c-2][r+2] == 1
and board[c—3] [r+3] == 1 and board[c-1][r] != 0:
row = r
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[c][r] == 1 and board[c-1][r+1] == 0 and board[c-2][r+2] == 1
and board[c-3] [r+3] == 1 and board[c-2][r+1] != 0O:
row = 1+l
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[c][r] == 1 and board[c-1][r+1] == 1 and board[c-2][r+2] == 0
and board[c-3][r+3] == 1 and board[c-3][r+2] != 0:
row = r+2
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[c][r] == 1 and board[c-1][r+1] == 1 and board[c-2][r+2] ==
and board[c-3] [r+3] == 0 and board[c-4][r+3] != 0:
row = r+3
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break

33

elif not winning move (board, 2) and not reach_1 (board) :
HIRCTHE T 5 or AT DIRELISME T &
while True:
row = random. randrange (7)
print ("Player2 Selected:”, row)
if board[5][row] == 0:
break
if is_valid_location(board, row):
col = get_next_open_row(board, row)

drop_piece (board, col, row, 2)
print_board (board)

turn += 1

turn = turn % 2

o connect4aFirstFour. py

import numpy as np

import random

COLUMN_COUNT = 6
ROW_COUNT = 7

R — R
def create_board():
board = np. zeros ((6, 7))

return board

o~z
def drop_piece(board, col, row, piece):

board[col] [row] = piece

BEDHNL, a~vN—F LOEFE THE > T eunm
def is_valid_location(board, row):

return board[5] [row] == 0

BZDHTHTHYAD IS, &b FTOBEDO~ ALY
def get_next_open_row (board, row):
for ¢ in range (COLUMN_COUNT) :
if board[c] [row] == 0:

return c

def print_board (board) :
print (np. flip (board, 0))

#kaE ¥ E
34

def winning_move (board, piece):
#Ha a CWRE LT
for r in range (ROW_COUNT-3) :
for ¢ in range (COLUMN_COUNT) :
if board[c][r] == piece and board[c][r+1] == piece and board[c] [r+2]
== piece and board[c][r+3] == piece:

return True

#X T CHRAE LT
for r in range (ROW_COUNT) :
for ¢ in range (COLUMN_COUNT-3) :
if board[c][r] == piece and board[c+1][r] == piece and board[c+2] [r]
== piece and board[c+3][r] == piece:

return True

HERE LY FF ATRE LT
for r in range (ROW_COUNT-3) :
for ¢ in range (COLUMN_COUNT-3) :
if board[c][r] == piece and board[c+l][r+l] == piece and
board[c+2] [r+2] == piece and board[c+3][r+3] == piece:

return True

HATE TR0 7 A THRAE Lo
for r in range (ROW_COUNT-3) :
for ¢ in range (3, COLUMN_COUNT) :
if board[c][r] == piece and board[c—1][r+1] == piece and board[c-
2] [r+2] == piece and board[c—3] [r+3] == piece:

return True

def reach_1 (board):
#HFEO YU — TR
a1 EHDOAH
for r in range (ROW_COUNT-3) :
if board[0][r] == 0 and board[0][r+1] == 1 and board[0][r+2] == 1 and board[0] [r+3]

return True
elif board[0][r] == 1 and board[0][r+1] == 0 and board[0] [r+2] == 1 and board[0] [r+3]

return True
elif board[0][r] == 1 and board[0][r+1] == 1 and board[0] [r+2] == 0 and board[0] [r+3]

return True
elif board[0][r] == 1 and board[0][r+1] == 1 and board[0][r+2] == 1 and board[0] [r+3]

return True

= o 2 BE A LI

35

for r in range (ROW_COUNT-3) :
for ¢ in range (1, COLUMN_COUNT) :
if board[c][r] == 0 and board[c][r+1] == 1 and board[c][r+2] ==
board[c] [r+3] == 1 and board[c-1][r] != 0:
return True
elif board[c][r] == 1 and board[c][r+l] == 0 and board[c][r+2] == 1 and
board[c][r+3] == 1 and board[c-1][r+1] != 0:
return True

elif board[c][r] ==

[u—

and

1 and board[c][r+1] == 1 and boardl[c][r+2] == 0 and
board[c][r+3] == 1 and board[c-1][r+2] != 0:
return True
elif boardlc][r] == 1 and board[c][r+1] == 1 and board[c][r+2] == 1 and
board[c][r+3] == 0 and board[c-1][r+3] != 0:

return True

i
for r in range (ROW_COUNT) :
for ¢ in range (COLUMN_COUNT-3) :
if board[c][r] == 1 and board[ctl][r] == 1 and board[c+2][r] == 1 and
board[c+3][r] == 0:

return True

BETE BN Y A (1 By B~ A& D F)
for r in range (ROW_COUNT-3) :
if board[0][r] == 0 and board[1][r+1] == 1 and board[2][r+2] == 1 and board[3][r+3]

return True
elif board[0][r] == 1 and board[1][r+1] == 0 and board[2] [r+2] == 1 and board[3] [r+3]
== 1 and board[0][r+1] != 0:
return True
elif board[0][r] == 1 and board[1][r+1] == 1 and board[2] [r+2] == 0 and board[3] [r+3]
== 1 and board[1][r+2] != 0:
return True
elif board[0][r] == 1 and board[1][r+1] == 1 and board[2] [r+2] == 1 and board[3] [r+3]
== 0 and board[2][r+3] != 0:

return True

HATE B30 A (1 BeH ~ AR&H LIS
for r in range (ROW_COUNT-3) :
for ¢ in range (1, COLUMN_COUNT-3) :
if board[c][r] == 0 and board[c+1][r+1] == 1 and board[c+2][r+2] == 1 and
board[c+3][r+3] == 1 and board[c-1][r] != 0:
return True
elif board[c][r] == 1 and board[c+1][r+l1] == 0 and board[c+2][r+2] == 1 and
board[c+3][r+3] == 1 and board[c][r+1] != 0:
return True
elif board[c][r] == 1 and board[c+1][r+1] == 1 and board[c+2][r+2] == 0 and
board[c+3][r+3] == 1 and board[c+1][r+2] != 0:

36

return True
elif board[c][r] == 1 and board[c+1][r+1] == 1 and board[c+2][r+2] == 1 and
board[c+3] [r+3] == 0 and board[c+2] [r+3] = 0:

return True

HATE TR0 7 A0 BH~ AREHDRH)
for r in range (ROW_COUNT-3) :
if board[3][r] == 0 and board[2][r+1] == 1 and board[1][r+2] == 1 and board[0] [r+3]
== 1 and board[2][r] != 0:
return True
elif board[3][r] == 1 and board[2][r+1] == 0 and board[1][r+2] == 1 and board[0] [r+3]
== 1 and board[1][r+1] != 0:
return True
elif board[3][r] == 1 and board[2] [r+1] == 1 and board[1] [r+2] == 0 and board[0] [r+3]
== 1 and board[0][r+2] != 0:
return True
elif board[3][r] == 2 and board[2] [r+1] == 2 and board[1] [r+2] == 2 and board[0] [r+3]

return True

BATE T30 FF 4 (1 B H ~ AT LIS
for r in range (ROW_COUNT-3) :
for ¢ in range (4, COLUMN_COUNT) :
if board[c][r] == 0 and board[c-1][r+1] == 1 and board[c—2] [r+2] == 1 and board[c-
3]1[r+3] == 1 and board[c-1][r] != 0:
return True
elif board[c][r] == 1 and board[c-1][r+1] == 0 and board[c-2][r+2] == 1 and
board[c-3][r+3] == 1 and board[c-2] [r+1] != 0:
return True
elif boardlc][r] == 1 and board[c-1][r+1] == 1 and board[c-2][r+2] == 0 and
board[c-3][r+3] == 1 and board[c-3] [r+2] != 0:
return True
elif boardlc][r] == 1 and board[c-1][r+1] == 1 and board[c-2][r+2] == 1 and
board[c-3][r+3] == 0 and board[c—4] [r+3] != 0:

return True

board = create_board ()
print_board (board)
game_over = False

turn = 0
turn_count = 0 #% — %%

while not game_over:
#Player 1 O
if turn == 0:

while True:

37

row = int(input ("Playerl Make Your Selection(0-6)”))
if board[5] [row] == 0:
break

if is_valid location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 1)
if winning_move (board, 1):
print ("Playerl Wins!”)
game_over = True

break

#Player 2 0%
else:
Bl A= HOa~DESS
if turn_count == 1:
if board[0][0] == 1 or board[0][2] == 1 or board[0][3] == 1 or board[0][4] ==
or board[0][6] == 1:
row = 3
print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
elif board[0][1] ==
row = 2
print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
elif board[0][5] == 1:
row = 4
print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board, row)

drop_piece(board, col, row, 2)

o X — HOa~vOEE)
elif turn_count == 3:
Bl X = BIZEFREW 2~
if board[0][0] == 1:
#2 Z— BIZEFEIPEW Y
if board[0][1] == 1 or board[0][2] =
== 1 or board[0][5] == 1:

row = 3

1 or board[1][3] == 1 or board[0][4]

print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board, row)

drop_piece (board, col, row, 2)

38

elif board[1][0] == 1:
row = 4
print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 2)
elif board[0][6] == 1:
row = 2
print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board, row)

drop_piece(board, col, row, 2)

#l #— BIZEFPEW Y
elif board[0][1] == 1:
B2 A= RICEFNRENZa~Y
if board[0][0] == 1 or board[1][2] == 1 or board[0][4] == 1 or board[0] [5]

row = 2
print ("Player2 Selected:”, row)
if is_valid_location (board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 2)
elif board[1][1] == 1:
row = 1
print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 2)
elif board[0][3] == 1:
row = 3
print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 2)
elif board[0][6] == 1:
row = b
print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board, row)

drop_piece (board, col, row, 2)

Bl 2= BICEFREN A~
elif board[0][2] == 1:
#2 ¥ — 2 BIZEFENEW o~
if board[0][0] == 1 or board[0][1] == 1 or board[1][3] == 1 or board[0][4]
== 1 or board[0][5] == 1 or board[0][6] == 1:

row = 3

39

print ("Player2 Selected:”, row)

if is_valid location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)

elif board[1][2] == 1:

row = 2

print ("Player2 Selected:”, row)

if is_valid_location(board, row):
col = get_next_open_row(board, row)

drop_piece (board, col, row, 2)

Bl X = BICEFREW 2~
elif board[0][3] == 1:
#2 Z—HIZEFVREW Y
if board[0][0] == 1 or board[0][1] == 1 or board[0][4] == 1:
row = 2
print ("Player2 Selected:”, row)
if is_valid location (board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
elif board[0][2] == 1 or board[0][5] == 1 or board[0][6] == 1:
row = 4
print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 2)
elif board[2][3] == 1:
row = 3
print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board, row)

drop_piece (board, col, row, 2)

#l #— HIZETFRE W -~
elif board[0][4] == 1:
#2 X — L BIZEFENE W -a<
if board[0][0] == 1 or board[0][1] == 1 or board[0][2] == 1 or board[1][3]
== 1 or board[0][5] == 1 or board[0][6] == 1:
row = 3
print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 2)
elif board[1][4] == 1:
row = 4
print ("Player2 Selected:”, row)
if is_valid_location(board, row):

col = get_next_open_row(board, row)

40

drop_piece (board, col, row, 2)

Bl 2= BICEFREN A~
elif board[0][5] == 1:
#2 ¥ — 2 BIZETNEW-a~
if board[0][1] == 1 or board[0][2] ==

row = 4
print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board,
drop_piece (board, col, row, 2)
elif board[0][0] == 1:
row = 1
print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board,
drop_piece (board, col, row, 2)
elif board[0][3] == 1:
row = 3
print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board,
drop_piece (board, col, row, 2)
elif board[1][5] == 1:
row = b
print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board,

drop_piece (board, col, row, 2)

Bl X = HICEFNENZa Y
elif board[0][6] == 1:
#2 ¥ — 2 BIZEFENEW o~
if board[0][1] 1 or board[0][2] ==
== 1 or board[0][5] :

row = 3
print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board,
drop_piece (board, col, row, 2)
elif board[0][0] == 1:
row = 4
print ("Player2 Selected:”, row)
if is_valid_location (board, row):
col = get_next_open_row(board,
drop_piece (board, col, row, 2)
elif board[1][6] == 1:

41

1 or board[1][4] == 1 or board[0][6]

Tow)

Tow)

Tow)

Tow)

1 or board[1][3] 1 or board[0] [4]

TOow)

Tow)

row = 2
print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board, row)

drop_piece (board, col, row, 2)

elif 3 < turn_count: HFEFID 2 Z — 1 LIADKE
#3 2 (1 Be B~ AMEHDRAE D Fr)
for r in range (ROW_COUNT-3) :
if board[0][r] == 0 and board[0][r+1] == 2 and board[0][r+2] == 2 and

board[0] [r+3] == 2:

Tow = T
col =0

drop_piece(board, col, row, 2)
winning_move (board, 2)

print ("Player2 Wins!”)
game_over = True

break

elif board[0][r] == 2 and board[0][r+1] == 0 and board[0][r+2] == 2 and

board[0] [r+3] == 2:

row = r+l

col =0

drop_piece(board, col, row, 2)
winning_move (board, 2)

print ("Player2 Wins!”)
game_over = True

break

elif board[0][r] == 2 and board[0][r+1] == 2 and board[0][r+2] == 0 and

board[0] [r+3] == 2:

row = r+2

col =0

drop_piece(board, col, row, 2)
winning_move (board, 2)

print ("Player2 Wins!”)
game_over = True

break

elif board[0][r] == 2 and board[0][r+1] == 2 and board[0][r+2] == 2 and

board[0] [r+3] == 0:

row = r+3

col =0

drop_piece(board, col, row, 2)
winning_move (board, 2)

print ("Player2 Wins!”)
game_over = True

break

#3922 BFELI%)
#4 SHOVAOETIZa~RNb 0% (LIS 1 BB~ AEHDOREDH] RN

42

TERRID)
for r in range (ROW_COUNT-3) :
for ¢ in range (1, COLUMN_COUNT) :
if board[c][r] == 0 and board[c][r+1] == 2 and board[c][r+2] == 2 and
board[c] [r+3] == 2 and board[c-1][r] != 0:
row = r
col = ¢
drop_piece (board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and board[c][r+1] == 0 and board[c][r+2] == 2 and
board[c] [r+3] == 2 and board[c-1][r+1] != 0:
row = r+l
col = ¢
drop_piece (board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and board[c][r+1] == 2 and board[c][r+2] == 0 and
board[c][r+3] == 2 and board[c-1][r+2] != 0:
row = r+2
col = ¢
drop_piece (board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and board[c][r+1] == 2 and board[c][r+2] == 2 and
board[c][r+3] == 0 and board[c-1][r+3] != 0:
row = r+3
col = ¢
drop_piece (board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break

#ivertical # 7
for r in range (ROW_COUNT) :
for ¢ in range (COLUMN_COUNT-3) :
if board[c][r] == 2 and board[c+1][r] == 2 and board[c+2][r] == 2 and
board[c+3] [r] == 0:
row = r
col = ¢t+3

drop_piece (board, col, row, 2)

43

winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break

HHE ER Y 77 A (1 BE A~ A& B DPRIE D H)
for r in range (ROW_COUNT-3) :
if board[0][r] == 0 and board[1][r+1] == 2 and board[2][r+2] == 2 and
board[3] [r+3] == 2:
TOW = T
col =0
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[0][r] == 2 and board[1][r+1] == 0 and board[2][r+2] == 2 and
board[3] [r+3] == 2 and board[0][r+1] != O:
row = r+l
col =1
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[0][r] == 2 and board[1][r+1] == 2 and board[2][r+2] == 0 and
board[3][r+3] == 2 and board[1][r+2] != 0:
row = r+2
col = 2
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[0][r] == 2 and board[1][r+1] == 2 and board[2][r+2] == 2 and
board[3] [r+3] == 0 and board[2][r+3] != 0:
row = r+3
col =3
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True

break

#ATE B30 A (1 BR B~ A& A LI
for r in range (ROW_COUNT-3) :
for ¢ in range (1, COLUMN_COUNT-3) :
if board[c][r] == 0 and board[ct+1][r+1] == 2 and board[c+2] [r+2] ==

44

and board[c+3][r+3] == 2 and board[c-1][r] != 0:
Tow = T
col = ¢
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and board[c+1][r+1] == 0 and board[c+2][r+2] ==
and board[c+3] [r+3] == 2 and board[c][r+1] != 0:
row = r+l
col = ctl
drop_piece (board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and board[c+1][r+1] == 2 and board[c+2] [r+2] == 0
and board[c+3][r+3] == 2 and board[c+1][r+2] != O:
row = r+2
col = ct+2
drop_piece (board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and board[c+1][r+1] == 2 and board[c+2][r+2] == 2
and board[c+3] [r+3] == 0 and board[c+2][r+3] != 0:
row = r+3
col = c¢+3
drop_piece (board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True

break

HERE TR0 7T A (1 BEE ~ A& B DRE D H)
for r in range (ROW_COUNT-3) :

if board[3][r] == 0 and board[2][r+1] == 2 and board[1][r+2] == 2 and
board[0] [r+3] == 2 and board[2][r] != 0:
row = r
col =3

drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[3][r] == 2 and board[2][r+1] == 0 and board[1][r+2] == 2 and

45

board[0][r+3] == 2 and board[1][r+1] != 0:

row = r+l

col =2

drop_piece(board, col, row, 2)

winning_move (board, 2)

print ("Player2 Wins!”)

game_over = True

break

elif board[3][r] == 2 and board[2][r+1] == 2 and board[1][r+2] == 0 and

board[0] [r+3] == 2 and board[0][r+2] != O:

row = r+2

col =1

drop_piece(board, col, row, 2)

winning_move (board, 2)

print ("Player2 Wins!”)

game_over = True

break

elif board[3][r] == 2 and board[2][r+1] == 2 and board[1][r+2] == 2 and

board[0] [r+3] == 0:

row = r+3

col =0

drop_piece(board, col, row, 2)

winning_move (board, 2)

print ("Player2 Wins!”)

game_over = True

break

BEJE T30 FF 4 (1 BeH ~ AfE T LIS
for r in range (ROW_COUNT-3) :
for ¢ in range (4, COLUMN_COUNT) :
if board[c][r] == 0 and boardlc-1][r+1] == 2 and board[c-2][r+2] ==
and board[c-3][r+3] == 2 and board[c-1][r] != 0:
row = r
col = ¢
drop_piece (board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and board[c-1][r+1] == 0 and board[c-2][r+2] ==
and board[c-3][r+3] == 2 and board[c-2][r+1] != 0:
row = r+l
col = c-1
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True

break

46

elif board[c][r] == 2 and board[c-1][r+1] == 2 and board[c-2][r+2] == 0
and board[c-3] [r+3] == 2 and board[c-3][r+2] != 0O:
row = r+2
col = ¢2
drop_piece (board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and board[c-1][r+1] == 2 and board[c-2] [r+2] == 2
and board[c-3][r+3] == 0 and board[c—4][r+3] != 0:
row = r+3
col = ¢-3
drop_piece (board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break

if not winning move (board, 2) and reach_1(board): #AHFN U —F 0 F S 7-H, &
(ZEWTE <
a1 EHDOAH
for r in range (ROW_COUNT-3) :
if board[0][r] == 0 and board[0][r+1] == 1 and board[0][r+2] == 1 and
board[0] [r+3] == 1:
Tow = T
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[0][r] == 1 and board[0][r+1] == 0 and board[0][r+2] == 1 and
board[0] [r+3] == 1:
row = r+l
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[0][r] == 1 and board[0][r+1] == 1 and board[0][r+2] == 0 and
board[0] [r+3] == 1:
row = r+2
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[0][r] == 1 and board[0][r+1] == 1 and board[0][r+2] == 1 and
board[0] [r+3] == 0:
row = r+3

if is_valid_location(board, row):

47

col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break

= = 2 BE A LI
for r in range (ROW_COUNT-3) :
for ¢ in range (1, COLUMN_COUNT) :
if board[c][r] == 0 and board[c][r+1] == 1 and board[c][r+2] == 1
and board[c][r+3] == 1 and board[c-1][r] != 0:
TOW = T
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[c][r] == 1 and board[c][r+1] == 0 and board[c][r+2] == 1
and board[c][r+3] == 1 and board[c-1][r+1] != 0:
row = r+l
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[c][r] == 1 and board[c][r+1] == 1 and board[c] [r+2] ==
and board[c] [r+3] == 1 and board[c-1][r+2] != 0:
row = r+2
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[c][r] == 1 and board[c][r+1] == 1 and board[c][r+2] == 1
and board[c][r+3] == 0 and board[c-1][r+3] != 0:
row = r+3
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break

b A
for r in range (ROW_COUNT) :
for ¢ in range (COLUMN_COUNT-3) :
if board[c][r] == 1 and board[c+1][r] == 1 and board[c+2][r] == 1
and board[c+3][r] == 0:
TOW = T
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break

#AJE B30 T T A (1 BEH ~ AfEH D)

48

for r in range (ROW_COUNT-3) :
if board[0][r] == 0 and board[1][r+1] == 1 and board[2][r+2] == 1 and
board[3] [r+3] == 1:
row = t
if is_valid_location(board, row):
col = get_next_open_row(board, row)

drop_piece(board, col, row, 2)

break
elif board[0][r] == 1 and board[1][r+1] == 0 and board[2][r+2] == 1 and
board[3] [r+3] == 1 and board[0][r+1] != 0:
row = r+l

if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 2)
break

elif board[0][r] == 1 and board[1][r+1] == 1 and board[2][r+2] == 0 and
board[3][r+3] == 1 and board[1][r+2] != 0:

row = r+2

if is_valid_location(board, row):
col = get_next_open_row(board, row)

drop_piece(board, col, row, 2)

break
elif board[0][r] == 1 and board[1][r+1] == 1 and board[2][r+2] == 1 and
board[3][r+3] == 0 and board[2] [r+3] != 0:
row = r+3

if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break

BAJH 230 T 4 (1 BeH ~ AT LIAM)
for r in range (ROW_COUNT-3) :
for ¢ in range (1, COLUMN_COUNT-3) :
if board[c][r] == 0 and board[c+1][r+1] == 1 and board[c+2] [r+2] ==
1 and board[c+3] [r+3] == 1 and board[c-1][r] != 0:
TOW = T
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[c][r] == 1 and board[ct+1][r+1] == 0 and board[c+2] [r+2]
== 1 and board[c+3][r+3] == 1 and board[c][r+1] != 0:
row = r+l
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[c][r] == 1 and board[c+1][r+1] == 1 and board[c+2] [r+2]

49

== 0 and board[c+3] [r+3] == 1 and board[c+1][r+2] != 0:
row = r+2
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break

elif board[c][r] == 1 and board[c+1][r+1] == 1 and board[c+2] [r+2]

== 1 and board[c+3][r+3] == 0 and board[c+2][r+3] |= O:
row = r+3
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break

BEHTRY T A1 BH~ A EHDH)
for r in range (ROW_COUNT-3) :

if board[3][r] == 0 and board[2][r+1] == 1 and board[1][r+2] ==

board[0] [r+3] == 1 and board[2][r] != O:
row =t
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[3][r] == 1 and board[2][r+1] == 0 and board[1] [r+2]
board[0] [r+3] == 1 and board[1][r] != 0:
row = r+l
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break

elif board[3][r] == 1 and board[2][r+1] == 1 and board[1] [r+2] ==

board[0][r+3] == 1 and board[0][r+2] != 0:
row = r+2
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break

elif board[3][r] == 2 and board[2][r+1] == 2 and board[1][r+2] ==

board[0] [r+3] == 0:
row = r+3
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break

HEE TR A (1 BB~ AfEA LS
for r in range (ROW_COUNT-3) :
for ¢ in range (4, COLUMN_COUNT) :

50

and

and

and

and

if board[c][r] == 0 and board[c-1][r+1] == 1 and board[c-2] [r+2] ==
1 and board[c-3][r+3] == 1 and board[c-1][r] != 0:
ToWw = T
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[c][r] == 1 and board[c-1][r+1] == 0 and board[c—2] [r+2]
== 1 and board[c-3][r+3] == 1 and board[c-2][r+1] |= 0:
row = r+l
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif boardl[c][r] == 1 and board[c-1][r+1] == 1 and board[c-2] [r+2]
== 0 and board[c-3][r+3] == 1 and board[c-3][r+2] != O:
row = r+2
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[c][r] == 1 and board[c-1][r+1] == 1 and board[c-2] [r+2]
== 1 and board[c-3][r+3] == 0 and board[c-4] [r+3] != 0:
row = r+3
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break

elif not winning move (board, 2) and not reach_1 (board):
BRTHEC S or AT 2RLISMT T o & A
while True:
row = random. randrange (7)
print ("Player2 Selected:”, row)
if board[5] [row] == 0:
break
if is_valid_location(board, row):
col = get_next_open_row(board, row)

drop_piece(board, col, row, 2)
print_board (board)
turn += 1

turn = turn % 2

turn_count += 1

51

