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o connect4aRandomAl. py

import numpy as np

import random

COLUMN_COUNT = 6
ROW_COUNT = 7

#AR — RIYERK

def create_board():
board = np. zeros ((6, 7))
return board

Ha~&4$TO
def drop_piece(board, col, row, piece):

board[col] [row] = piece

§Z20FNL, a~N—F LOERFE THE > TR0,
def is_valid_location(board, row):

return board[5] [row] == 0

HEDHTH TAHYADI L, b FTOEO~AZIKT
def get_next_open_row(board, row):
for ¢ in range (COLUMN_COUNT) :
if board[c][row] == 0:

return c

def print_board (board) :
print (np. flip (board, 0))

HIRZE OFIE
def winning_move (board, piece):
#3 3 TRE LD
for r in range (ROW_COUNT-3) :
for ¢ in range (COLUMN_COUNT) :
if board[c][r] == piece and board[c][r+1] == piece and board[c] [r+2]
== piece and board[c][r+3] == piece:

return True

H¥ T CWRAE LT
for r in range (ROW_COUNT) :
for ¢ in range (COLUMN_COUNT-3) :
if board[c] [r] == piece and board[c+1][r] == piece and board[c+2] [r]
== piece and board[c+3][r] == piece:

return True

11



HERE LRV FF ATRE LT
for r in range (ROW_COUNT-3) :
for ¢ in range (COLUMN_COUNT-3) :
if board[c][r] == piece and board[ct+l][r+1] == piece and
board[c+2] [r+2] == piece and board[c+3] [r+3] == piece:

return True

HAETE TR0 T A TRAE Licn
for r in range (ROW_COUNT-3) :
for ¢ in range(3, COLUMN_COUNT) :
if board[c][r] == piece and board[c—1][r+1] == piece and board[c—
21 [r+2] == piece and board[c-3][r+3] == piece:

return True

board = create_board ()
print_board (board)
game_over = False

turn = 0

while not game_over:
#Player 1 OF
if turn == 0:
firow = int (input ("Playerl Make Your Selection(0-6)7))
while True:
row = int (input ("Playerl Make Your Selection(0-6)”))
#if board[5][row] == 0 and -1 < row and row < 7: #PHA T T —IZ
A
if board[5] [row] == 0:
break

if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 1)
if winning_move (board, 1):
print ("PLAYER1 Wins!”)

game_over = True

#Player 2 D&
else:
while True:
row = random. randrange (7)
print ("Player2 Selected:”, row)
if board[5][row] == 0:
break

if is_valid_location(board, row):

12



col = get_next_open_row(board, row)

drop_piece (board, col, row, 2)

if winning_move (board, 2):
print ("PLAYER2 Wins!”)

game_over = True
print_board (board)

turn += 1

turn = turn % 2

o connect4aReachAl. py

import numpy as np

import random

COLUMN_COUNT = 6
ROW_COUNT = 7

#AR— FAERK

def create_board() :
board = np. zeros ((6, 7))
return board

Ha~%xio
def drop_piece(board, col, row, piece):

board[col] [row] = piece

BEDFNL, a~N—F LOERFE THE > TR0 m
def is_valid_ location(board, row):

return board[5][row] == 0

HEDHITH TAHYADI L, b FOEO~ A %KY
def get_next_open_row(board, row):
for ¢ in range (COLUMN_COUNT) :
if board[c][row] == 0:

return c

def print_board (board) :
print (np. flip (board, 0))

HIR A5 OHE
def winning_move (board, piece):
#3 3 TPRAE LT
for r in range (ROW_COUNT-3) :
for ¢ in range (COLUMN_COUNT) :

13



if board[c] [r] == piece and board[c][r+1] == piece and board[c][r+2]
== piece and board[c][r+3] == piece:

return True

H4 7T CHRE LT
for r in range (ROW_COUNT) :
for ¢ in range (COLUMN_COUNT-3) :
if board[c] [r] == piece and board[c+1][r] == piece and board[c+2] [r]
== piece and board[c+3][r] == piece:

return True

HER LY FF A TRE LT
for r in range (ROW_COUNT-3) :
for ¢ in range (COLUMN_COUNT-3) :
if board[c][r] == piece and board[ct+l][r+l] == piece and
board[c+2] [r+2] == piece and board[c+3][r+3] == piece:

return True

HERE TR0 FF ATRE L)
for r in range (ROW_COUNT-3) :
for ¢ in range (3, COLUMN_COUNT) :
if board[c][r] == piece and board[c-1][r+1] == piece and board[c-
2] [r+2] == piece and board[c-3][r+3] == piece:

return True

board = create_board ()
print_board (board)
game_over = False

turn = 0

while not game_over:
#Player 1 O
if turn == 0:
while True:
row = int(input ("Playerl Make Your Selection(0-6)”))
if board[5] [row] == 0:
break

if is_valid_location (board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 1)
if winning_move (board, 1):
print ("Playerl Wins!”)

game_over = True

#Player 2 O
else:

ta o (1 BRH~ AL DOYE D I)
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for r in range (ROW_COUNT-3) :
if board[0][r] == 0 and board[0][r+1] == 2 and board[0][r+2] == 2 and
board[0] [r+3] == 2:

TOW = T

col =0

drop_piece(board, col, row, 2)

winning_move (board, 2)

print ("Player2 Wins!”)

game_over = True

break
elif board[0][r] == 2 and board[0][r+l1] == 0 and board[0][r+2] == 2 and
board[0] [r+3] == 2:
row = r+l
col =0

drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)

game_over = True

break
elif board[0][r] == 2 and board[0][r+1] == 2 and board[0][r+2] == 0 and
board[0] [r+3] == 2:
row = r+2
col =0

drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)

game_over = True

break
elif board[0][r] == 2 and board[0][r+1] == 2 and board[0][r+2] == 2 and
board[0] [r+3] == 0:
row = r+3
col =0

drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)

game_over = True

break
#3222 Be B LIBE)
B OHDOTADEFIZa~nd o0zl (LS 11 Bl ~ 2B ORE DI 2R T
BRI
for r in range (ROW_COUNT-3) :
for ¢ in range (1, COLUMN_COUNT) :
if board[c][r] == 0 and board[c][r+l1] == 2 and board[c][r+2] == 2 and
board[c] [r+3] == 2 and board[c-1][r] != 0:
row = r
col = ¢

drop_piece(board, col, row, 2)
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winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif boardlc][r] == 2 and board[c][r+1] == 0 and board[c][r+2] == 2 and
board[c] [r+3] == 2 and board[c-1][r+1] != 0:
row = r+l
col = ¢
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and board[c][r+1] == 2 and board[c][r+2] == 0 and
board[c][r+3] == 2 and board[c-1][r+2] != 0:
row = r+2
col = ¢
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif boardlc][r] == 2 and board[c][r+1] == 2 and board[c][r+2] == 2 and
board[c][r+3] == 0 and board[c-1][r+3] != 0:
row = r+3
col = ¢
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break

827
for r in range (ROW_COUNT) :
for ¢ in range (COLUMN_COUNT-3) :

if board[c][r] == 2 and board[c+1][r] == 2 and board[c+2][r] == 2 and
board[c+3] [r] == O:
row = r
col = ¢+3

drop_piece(board, col, row, 2)
winning_move (board, 2)

print ("Player2 Wins!”)
game_over = True

break

HER LD FF 2 (1 Bt B~ A& DRAE D H)
for r in range (ROW_COUNT-3) :
if board[0][r] == 0 and board[1][r+1] == 2 and board[2][r+2] == 2 and
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board[3] [r+3] == 2:
TOW = T
col =0
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)

game_over = True

break
elif board[0][r] == 2 and board[1][r+l1] == 0 and board[2][r+2] == 2 and
board[3] [r+3] == 2 and board[0][r+1] != O:
row = r+l
col =1

drop_piece (board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)

game_over = True

break
elif board[0][r] == 2 and board[1][r+1] == 2 and board[2][r+2] == 0 and
board[3][r+3] == 2 and board[1][r+2] != 0:
row = r+2
col = 2

drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)

game_over = True

break
elif board[0][r] == 2 and board[1][r+l1] == 2 and board[2][r+2] == 2 and
board[3] [r+3] == 0 and board[2][r+3] != 0:
row = r+3
col =3

drop_piece(board, col, row, 2)
winning_move (board, 2)

print ("Player2 Wins!”)
game_over = True

break

#AE B30 A (1 Be B~ AfE A LIS
for r in range (ROW_COUNT-3) :
for ¢ in range (1, COLUMN_COUNT-3) :
if board[c][r] == 0 and board[c+1][r+1] == 2 and board[c+2][r+2] == 2 and
board[c+3][r+3] == 2 and board[c-1][r] != 0:
TOW = T
col = ¢
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True

break
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elif board[c][r] == 2 and board[c+1][r+1] == 0 and board[c+2][r+2] == 2 and
board[c+3][r+3] == 2 and board[c][r+1] != 0:
row = r+l
col = ¢+l
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and boardl[c+1][r+1] == 2 and board[c+2] [r+2] == 0 and
board[c+3][r+3] == 2 and board[c+1][r+2] != 0:
row = r+2
col = ct+2
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and board[ct+1][r+1] == 2 and board[c+2][r+2] == 2 and
board[c+3][r+3] == 0 and board[c+2] [r+3] != 0:
row = r+3
col = ¢+3
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True

break

HER TR0 7T A (1 BEH ~ A& HDIRE D H)
for r in range (ROW_COUNT-3) :

if board[3][r] == 0 and board[2][r+1] == 2 and board[1][r+2] == 2 and
board[0][r+3] == 2 and board[2][r] != 0:
TOW = T
col =3

drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)

game_over = True

break
elif board[3][r] == 2 and board[2][r+l1] == 0 and board[1][r+2] == 2 and
board[0][r+3] == 2 and board[1][r+1] != 0:
row = r+l
col = 2

drop_piece(board, col, row, 2)
winning_move (board, 2)

print ("Player2 Wins!”)
game_over = True

break
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elif board[3][r] == 2 and board[2][r+l1] == 2 and board[1][r+2] == 0 and
board[0] [r+3] == 2 and board[0][r+2] != 0:
row = r+2
col =1
drop_piece (board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)

game_over = True

break
elif board[3][r] == 2 and board[2][r+1] == 2 and board[1][r+2] == 2 and
board[0] [r+3] == 0:
row = r+3
col =0

drop_piece(board, col, row, 2)
winning_move (board, 2)

print ("Player2 Wins!”)
game_over = True

break

HATE T 77 A (1 BER < A& H LIS
for r in range (ROW_COUNT-3) :
for ¢ in range (4, COLUMN_COUNT) :
if board[c][r] == 0 and board[c-1][r+1] == 2 and board[c-2][r+2] == 2 and
board[c-3][r+3] == 2 and board[c-1][r] != 0:
row = r
col = ¢
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and board[c-1][r+1] == 0 and board[c-2][r+2] == 2 and
board[c-3][r+3] == 2 and board[c-2][r+1] != 0:
row = r+l
col = c-1
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and board[c-1][r+1] == 2 and board[c-2][r+2] == 0 and
board[c-3][r+3] == 2 and board[c-3] [r+2] != 0:
row = r+2
col = ¢—2
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)

game_over = True
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break
elif board[c][r] == 2 and boardlc-1][r+1] == 2 and board[c-2][r+2] == 2 and

board[c-3][r+3] == 0 and board[c—4][r+3] != 0:

row = r+3

col = ¢-3

drop_piece(board, col, row, 2)

winning_move (board, 2)

print ("Player2 Wins!”)

game_over = True

break

if not winning _move (board, 2):
BHR T CHIELUSME T & 2

while True:

row = random. randrange (7)

print ("Player2 Selected:”, row)

if board[5][row] == 0:

break

if is_valid_location(board, row):

col = get_next_open_row(board, row)

drop_piece(board, col, row, 2)

if reach_move (board, 2) and not winning move (board, 2):
print ("PLAYER2 Reach”)

print_board (board)

turn += 1
turn = turn % 2

o connect4aReachAI2. py

import numpy as np

import random

COLUMN_COUNT = 6
ROW_COUNT = 7

AR — RYERL
def create_board():
board = np. zeros ((6, 7))

return board

Ha~xfIo
def drop_piece(board, col, row, piece):

board[col] [row] = piece
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BFOFINL, a~Bn—F FOERFE THE > TR
def is_valid location(board, row):
return board[5][row] == 0

HEDHITH TAHYADI L, kb FOEO~AZIKT
def get_next_open_row (board, row):
for ¢ in range (COLUMN_COUNT) :
if board[c][row] == 0:

return c

def print_board (board) :
print (np. flip (board, 0))

#R G OHIE
def winning_move (board, piece):
#a 2 TYRAE LT
for r in range (ROW_COUNT-3) :
for ¢ in range (COLUMN_COUNT) :
if board[c] [r] == piece and board[c][r+1] == piece and board[c][r+2]
== piece and board[c][r+3] == piece:

return True

#E T CUAE LT
for r in range (ROW_COUNT) :
for ¢ in range (COLUMN_COUNT-3) :
if board[c][r] == piece and board[c+1][r] == piece and board[c+2] [r]
== piece and board[c+3][r] == piece:

return True

HATE B0 0 A TRAE Licn
for r in range (ROW_COUNT-3) :
for ¢ in range (COLUMN_COUNT-3) :
if board[c][r] == piece and board[c+l][r+l] == piece and
board[c+2] [r+2] == piece and board[c+3][r+3] == piece:

return True

HERE TRV FFATRE L)
for r in range (ROW_COUNT-3) :
for ¢ in range (3, COLUMN_COUNT) :
if board[c][r] == piece and board[c-1][r+1] == piece and board[c-
2] [r+2] == piece and board[c—3] [r+3] == piece:

return True

def reach_1(board) :
BHFEO U —F R
fg a2 1 BEHOA
for r in range (ROW_COUNT-3) :
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if board[0][r] == 0 and board[0][r+1] == 1 and board[0] [r+2] == 1 and board[0] [r+3]

return True
elif board[0][r] == 1 and board[0][r+1] == 0 and board[0][r+2] == 1 and board[0] [r+3]

return True
elif board[0][r] == 1 and board[0][r+1] == 1 and board[0][r+2] == 0 and board[0] [r+3]

return True
elif board[0][r] == 1 and board[0][r+1] == 1 and board[0][r+2] == 1 and board[0] [r+3]

return True

#a 22 BEHDIRE
for r in range (ROW_COUNT-3) :
for ¢ in range (1, COLUMN_COUNT) :
if board[c][r] == 0 and board[c][r+1] == 1 and board[c][r+2] == 1 and
board[c] [r+3] == 1 and board[c-1][r] != 0:
return True
elif board[c][r] == 1 and board[c][r+1] == 0 and board[c][r+2] == 1 and
board[c][r+3] == 1 and board[c-1][r+1] != 0:
return True
elif board[c][r] == 1 and board[c][r+1] == 1 and board[c][r+2] == 0 and
board[c][r+3] == 1 and board[c-1][r+2] != 0:
return True
elif boardlc][r] == 1 and board[c][r+1] == 1 and board[c][r+2] == 1 and
board[c][r+3] == 0 and board[c-1][r+3] != 0:
return True

Y
for r in range (ROW_COUNT) :
for ¢ in range (COLUMN_COUNT-3) :
if board[c][r] == 1 and board[ct1][r] == 1 and board[c+2][r] == 1 and
board[c+3] [r] == O:

return True

#ATE L3 FF A (1 BH~ AEHDTH)
for r in range (ROW_COUNT-3) :
if board[0][r] == 0 and board[1][r+1] == 1 and board[2][r+2] == 1 and board[3][r+3]
== 1:
return True
elif board[0][r] == 1 and board[1][r+1] == 0 and board[2] [r+2] == 1 and board[3] [r+3]
== 1 and board[0][r+1] != 0:
return True
elif board[0][r] == 1 and board[1][r+1] == 1 and board[2] [r+2] == 0 and board[3] [r+3]
== 1 and board[1][r+2] != 0:
return True
elif board[0][r] == 1 and board[1][r+1] == 1 and board[2] [r+2] == 1 and board[3] [r+3]
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== 0 and board[2] [r+3] != 0:

return True

BAJH 230 FF 4 (1 BeH ~ AT LIAM)
for r in range (ROW_COUNT-3) :
for ¢ in range (1, COLUMN_COUNT-3) :
if board[c][r] == 0 and board[c+1][r+1] == 1 and board[c+2][r+2] == 1 and
board[c+3][r+3] == 1 and board[c-1][r] != 0:
return True
elif board[c][r] == 1 and board[c+l][r+1] == 0 and board[c+2][r+2] == and
board[c+3][r+3] == 1 and board[c][r+1] != 0:
return True
elif board[c][r] == 1 and board[c+1][r+1] == 1 and board[c+2][r+2] == 0 and
board[c+3][r+3] == 1 and board[c+1][r+2] != 0:
return True
elif board[c][r] == 1 and board[c+1][r+1] == 1 and board[c+2][r+2] == and
board[c+3][r+3] == 0 and board[c+2][r+3] != 0:

return True

BATH T30 FF 4 (1 B H ~ AR D 72)
for r in range (ROW_COUNT-3) :
if board[3][r] == 0 and board[2][r+1] == 1 and board[1][r+2] == 1 and board[0] [r+3]
== 1 and board[2][r] != 0:
return True
elif board[3][r] == 1 and board[2] [r+1] == 0 and board[1] [r+2] == 1 and board[0] [r+3]
== 1 and board[1][r+1] != 0:
return True
elif board[3][r] == 1 and board[2][r+1] == 1 and board[1] [r+2] == 0 and board[0] [r+3]
== 1 and board[0][r+2] != 0:
return True
elif board[3][r] == 2 and board[2] [r+1] == 2 and board[1] [r+2] == 2 and board[0] [r+3]

return True

BHE TR0 7 2 (1 BB~ A& AL
for r in range (ROW_COUNT-3) :
for ¢ in range (4, COLUMN_COUNT) :
if board[c][r] == 0 and board[c-1] [r+1] == 1 and board[c-2] [r+2] == 1 and board[c-
3][r+3] == 1 and board[c-1][r] != O:
return True
elif boardlc][r] == 1 and board[c-1][r+1] == 0 and board[c-2][r+2] == 1 and
board[c-3][r+3] == 1 and board[c-2] [r+1] != 0:
return True
elif board[c][r] == 1 and board[c-1][r+l1] == 1 and board[c-2][r+2] == 0 and
board[c-3][r+3] == 1 and board[c-3] [r+2] != 0:
return True
elif board[c][r] == 1 and board[c-1][r+l1] == 1 and board[c-2][r+2] == 1 and
board[c-3][r+3] == 0 and board[c—4][r+3] != 0:
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return True

board = create_board()
print_board (board)
game_over = False

turn = 0

while not game_over:
#Player 1 OF
if turn ==
while True:
row = int (input ("Playerl Make Your Selection(0-6)”))
if board[5][row] == 0:
break

if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 1)
if winning_move (board, 1):
print ("Playerl Wins!”)
game_over = True
break

#Player 2 O
else:
B3 = (1 Bt H ~ A HDOPAE D7)
for r in range (ROW_COUNT-3) :
if board[0][r] == 0 and board[0][r+1] == 2 and board[0][r+2] == 2 and
board[0] [r+3] == 2:
TOW = T
col =0
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)

game_over = True

break
elif board[0][r] == 2 and board[0][r+l] == 0 and board[0][r+2] == 2 and
board[0] [r+3] == 2:
row = r+l
col =0

drop_piece (board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[0][r] == 2 and board[0][r+1] == 2 and board[0][r+2] == 0 and
board[0] [r+3] == 2:
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row = r+2

col =0

drop_piece(board, col, row, 2)
winning_move (board, 2)

print ("Player2 Wins!”)

game_over = True

break
elif board[0][r] == 2 and board[0][r+l1] == 2 and board[0][r+2] == 2 and
board[0] [r+3] == 0:
row = r+3
col =0

drop_piece(board, col, row, 2)
winning_move (board, 2)

print ("Player2 Wins!”)
game_over = True

break

#a =2 (2 BRHLULK)
#te DHOADOETFIZa~NH0& 4l (UL 11 BE~ARHEDOREDH] ZEEWVTH

BRI
for r in range (ROW_COUNT-3) :
for ¢ in range (1, COLUMN_COUNT) :
if board[c][r] == 0 and board[c][r+l] == 2 and board[c][r+2] == 2 and
board[c][r+3] == 2 and board[c-1][r] != 0:
row = r
col = ¢

drop_piece(board, col, row, 2)

winning_move (board, 2)

print ("Player2 Wins!”)

game_over = True

break

elif board[c][r] == 2 and board[c][r+1] == 0 and board[c][r+2] == 2 and

board[c] [r+3] == 2 and board[c-1][r+1] != 0:

row = r+l

col = ¢

drop_piece(board, col, row, 2)

winning_move (board, 2)

print ("Player2 Wins!”)

game_over = True

break

elif board[c][r] == 2 and board[c][r+1] == 2 and board[c][r+2] == 0 and

board[c][r+3] == 2 and board[c-1][r+2] != 0:

row = r+2

col = ¢

drop_piece(board, col, row, 2)

winning_move (board, 2)

print ("Player2 Wins!”)

game_over = True
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break
elif boardlc][r] == 2 and board[c][r+1] == 2 and board[c][r+2] == 2 and

board[c][r+3] == 0 and board[c-1][r+3] != 0:

row = r+3

col = ¢

drop_piece(board, col, row, 2)

winning_move (board, 2)

print ("Player2 Wins!”)

game_over = True

break

#tvertical # 7
for r in range (ROW_COUNT) :
for ¢ in range (COLUMN_COUNT-3) :

if board[c][r] == 2 and board[c+1][r] == 2 and board[c+2][r] == 2 and
board[c+3][r] == 0:
row = r
col = ¢+3

drop_piece(board, col, row, 2)
winning_move (board, 2)

print ("Player2 Wins!”)
game_over = True

break

HER LD FF 2 (1 Bt B~ A& DRAE D I)
for r in range (ROW_COUNT-3) :

if board[0][r] == 0 and board[1][r+1] == 2 and board[2][r+2] == 2 and
board[3] [r+3] == 2:
TOW = T
col =0

drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)

game_over = True

break
elif board[0][r] == 2 and board[1][r+1] == 0 and board[2][r+2] == 2 and
board[3] [r+3] == 2 and board[0][r+1] != O:
row = r+l
col =1

drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)

game_over = True

break
elif board[0][r] == 2 and board[1][r+1] == 2 and board[2][r+2] == 0 and
board[3][r+3] == 2 and board[1][r+2] != 0:
row = r+2
col = 2
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drop_piece (board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)

game_over = True

break
elif board[0][r] == 2 and board[1][r+l1] == 2 and board[2][r+2] == 2 and
board[3] [r+3] == 0 and board[2][r+3] != 0:
row = r+3
col =3

drop_piece (board, col, row, 2)
winning_move (board, 2)

print ("Player2 Wins!”)
game_over = True

break

#ATE B30 A (1 BEH ~ A& A L)
for r in range (ROW_COUNT-3) :
for ¢ in range (1, COLUMN_COUNT-3) :
if board[c][r] == 0 and board[c+1][r+1] == 2 and board[c+2][r+2] == 2 and
board[c+3][r+3] == 2 and board[c-1][r] != 0:
TOW = T
col = ¢
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and boardl[c+1][r+1] == 0 and board[c+2][r+2] == 2 and
board[c+3][r+3] == 2 and board[c][r+1] != 0:
row = r+l
col = ¢+l
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and boardl[c+1][r+1] == 2 and board[c+2] [r+2] == 0 and
board[c+3][r+3] == 2 and board[c+1][r+2] != 0:
row = r+2
col = c+2
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and board[c+1][r+1] == 2 and board[c+2][r+2] == 2 and
board[c+3][r+3] == 0 and board[c+2] [r+3] != 0:

row = r+3
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col = ¢+3

drop_piece(board, col, row, 2)
winning_move (board, 2)

print ("Player2 Wins!”)
game_over = True

break

HETE TR 7T A (1 BB~ A& B DOPE D H)
for r in range (ROW_COUNT-3) :

if board[3][r] == 0 and board[2][r+1] == 2 and board[1][r+2] == 2 and
board[0][r+3] == 2 and board[2][r] != 0:
Tow = T
col =3

drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)

game_over = True

break
elif board[3][r] == 2 and board[2][r+l1] == 0 and board[1][r+2] == 2 and
board[0] [r+3] == 2 and board[1][r+1] != 0:
row = r+l
col =2

drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)

game_over = True

break
elif board[3][r] == 2 and board[2][r+1] == 2 and board[1][r+2] == 0 and
board[0] [r+3] == 2 and board[0][r+2] != 0:
row = r+2
col =1

drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)

game_over = True

break
elif board[3][r] == 2 and board[2][r+1] == 2 and board[1][r+2] == 2 and
board[0] [r+3] == 0:
row = r+3
col =0

drop_piece(board, col, row, 2)
winning_move (board, 2)

print ("Player2 Wins!”)
game_over = True

break

BAJE T30 77 2 (1 Be B~ A& AL
for r in range (ROW_COUNT-3) :
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for ¢ in range (4, COLUMN_COUNT) :
if board[c][r] == 0 and board[c-1][r+1] == 2 and board[c-2][r+2] == 2 and
board[c-3][r+3] == 2 and board[c-1][r] != 0:
Tow = T
col = ¢
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and board[c-1][r+1] == 0 and board[c-2][r+2] == 2 and
board[c-3][r+3] == 2 and board[c-2] [r+1] != 0:
row = r+l
col = c-1
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and boardl[c-1][r+1] == 2 and board[c-2][r+2] == 0 and
board[c-3][r+3] == 2 and board[c-3] [r+2] != 0:
row = r+2
col = ¢—2
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and boardlc-1][r+1] == 2 and board[c-2] [r+2] == 2 and
board[c-3][r+3] == 0 and board[c—4][r+3] != 0:
row = r+3
col = ¢-3
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True

break

if not winning move (board, 2) and reach_1(board): #fHF U —F T L=, Sl
WTRE<
ta = 1 BRHDOH
for r in range (ROW_COUNT-3) :
if board[0][r] == 0 and board[0][r+1] == 1 and board[0][r+2] == 1 and
board[0] [r+3] == 1:
TOW = T
if is_valid_location(board, row):
col = get_next_open_row(board, row)

drop_piece (board, col, row, 2)
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break
elif board[0][r] == 1 and board[0][r+1] == 0 and board[0][r+2] == 1 and
board[0] [r+3] == 1:
row = r+l
if is_valid location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 2)
break
elif board[0][r] == 1 and board[0][r+1] == 1 and board[0][r+2] == 0 and
board[0] [r+3] == 1:
row = r+2
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 2)
break
elif board[0][r] == 1 and board[0][r+1] == 1 and board[0][r+2] == 1 and
board[0] [r+3] == 0:
row = r+3
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 2)
break

#a 2 2 BrHLARE
for r in range (ROW_COUNT-3) :
for ¢ in range (1, COLUMN_COUNT) :
if board[c][r] == 0 and board[c][r+1] == 1 and board[c][r+2] == 1 and
board[c] [r+3] == 1 and board[c-1][r] != 0:
Tow = T
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[c][r] == 1 and board[c][r+1] == 0 and board[c][r+2] == 1 and
board[c][r+3] == 1 and board[c-1][r+1] != 0:
row = r+l
if is_valid_location(board, row):
col = get_next_open_row(board, row)

drop_piece(board, col, row, 2)

break
elif board[c][r] == 1 and board[c][r+1] == 1 and board[c][r+2] == 0 and
board[c] [r+3] == 1 and board[c—1] [r+2] != 0:
row = r+2

if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[c][r] == 1 and board[c][r+1] == 1 and board[c][r+2] == 1 and
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board[c] [r+3] == 0 and board[c-1][r+3] != 0:
row = r+3
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break

3
for r in range (ROW_COUNT) :
for ¢ in range (COLUMN_COUNT-3) :
if board[c][r] == 1 and board[c+1][r] == 1 and board[c+2][r] == 1 and
board[c+3][r] == 0:
Tow = T
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break

#ETE B0 A (1 BB~ A& HDF)
for r in range (ROW_COUNT-3) :
if board[0][r] == 0 and board[1][r+l1] == 1 and board[2][r+2] == 1 and
board[3] [r+3] == 1:
Tow = T
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 2)
break
elif board[0][r] == 1 and board[1][r+1] == 0 and board[2][r+2] == 1 and
board[3] [r+3] == 1 and board[0][r+1] != 0:
row = r+l
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 2)
break
elif board[0][r] == 1 and board[1][r+1] == 1 and board[2][r+2] == 0 and
board[3] [r+3] == 1 and board[1][r+2] != 0:
row = r+2
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 2)
break
elif board[0][r] == 1 and board[1][r+1] == 1 and board[2][r+2] == 1 and
board[3][r+3] == 0 and board[2][r+3] != 0:
row = r+3
if is_valid_location (board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 2)
break
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#ATE B30 A (1 BB~ A& A L)
for r in range (ROW_COUNT-3) :
for ¢ in range (1, COLUMN_COUNT-3) :
if board[c][r] == 0 and boardlc+1][r+1] == 1 and board[c+2][r+2] ==
and board[c+3][r+3] == 1 and board[c-1][r] != 0:
row = Tt
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[c][r] == 1 and board[c+1][r+1] == 0 and board[c+2] [r+2] ==
and board[c+3] [r+3] == 1 and board[c][r+1] != 0:
row = r+l
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[c][r] == 1 and board[c+1][r+1] == 1 and board[c+2][r+2] == 0
and board[c+3] [r+3] == 1 and board[c+1][r+2] != 0:
row = r+2
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[c][r] == 1 and board[c+1][r+1] == 1 and board[c+2][r+2] ==
and board[c+3][r+3] == 0 and board[c+2][r+3] != 0:
row = r+3
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break

EERE TR0 A (BB~ RAfEHDIHR)
for r in range (ROW_COUNT-3) :

if board[3][r] == 0 and board[2][r+1] == 1 and board[1][r+2] == 1 and
board[0] [r+3] == 1 and board[2][r] != 0:
row = r

if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 2)
break

elif board[3][r] == 1 and board[2][r+1] == 0 and board[1][r+2] == 1 and
board[0] [r+3] == 1 and board[1][r] != 0:

row = r+l

if is_valid_location(board, row):
col = get_next_open_row(board, row)

drop_piece (board, col, row, 2)

32



break
elif board[3][r] == 1 and board[2][r+1] == 1 and board[1][r+2] == 0 and
board[0][r+3] == 1 and board[0][r+2] != 0:
row = r+2
if is_valid location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 2)
break
elif board[3][r] == 2 and board[2][r+1] == 2 and board[1][r+2] == 2 and
board[0] [r+3] == 0:
row = r+3
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 2)
break

BETR TR0 FF 2 (1 Bt H~ A& B LIS
for r in range (ROW_COUNT-3) :
for ¢ in range (4, COLUMN_COUNT) :
if board[c][r] == 0 and boardl[c-1][r+1] == 1 and board[c-2][r+2] == 1
and board[c—3] [r+3] == 1 and board[c-1][r] != 0:
row = r
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[c][r] == 1 and board[c-1][r+1] == 0 and board[c-2][r+2] == 1
and board[c-3] [r+3] == 1 and board[c-2][r+1] != 0O:
row = 1+l
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[c][r] == 1 and board[c-1][r+1] == 1 and board[c-2][r+2] == 0
and board[c-3][r+3] == 1 and board[c-3][r+2] != 0:
row = r+2
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[c][r] == 1 and board[c-1][r+1] == 1 and board[c-2][r+2] ==
and board[c-3] [r+3] == 0 and board[c-4][r+3] != 0:
row = r+3
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
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elif not winning move (board, 2) and not reach_1 (board) :
HIRCTHE T 5 or AT DIRELISME T &
while True:
row = random. randrange (7)
print ("Player2 Selected:”, row)
if board[5][row] == 0:
break
if is_valid_location(board, row):
col = get_next_open_row(board, row)

drop_piece (board, col, row, 2)
print_board (board)

turn += 1

turn = turn % 2

o connect4aFirstFour. py

import numpy as np

import random

COLUMN_COUNT = 6
ROW_COUNT = 7

R — R
def create_board():
board = np. zeros ((6, 7))

return board

o~z
def drop_piece(board, col, row, piece):

board[col] [row] = piece

BEDHNL, a~vN—F LOEFE THE > T eunm
def is_valid_location(board, row):

return board[5] [row] == 0

BZDHTHTHYAD IS, &b FTOBEDO~ ALY
def get_next_open_row (board, row):
for ¢ in range (COLUMN_COUNT) :
if board[c] [row] == 0:

return c

def print_board (board) :
print (np. flip (board, 0))

#kaE ¥ E
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def winning_move (board, piece):
#Ha a CWRE LT
for r in range (ROW_COUNT-3) :
for ¢ in range (COLUMN_COUNT) :
if board[c][r] == piece and board[c][r+1] == piece and board[c] [r+2]
== piece and board[c][r+3] == piece:

return True

#X T CHRAE LT
for r in range (ROW_COUNT) :
for ¢ in range (COLUMN_COUNT-3) :
if board[c][r] == piece and board[c+1][r] == piece and board[c+2] [r]
== piece and board[c+3][r] == piece:

return True

HERE LY FF ATRE LT
for r in range (ROW_COUNT-3) :
for ¢ in range (COLUMN_COUNT-3) :
if board[c][r] == piece and board[c+l][r+l] == piece and
board[c+2] [r+2] == piece and board[c+3][r+3] == piece:

return True

HATE TR0 7 A THRAE Lo
for r in range (ROW_COUNT-3) :
for ¢ in range (3, COLUMN_COUNT) :
if board[c][r] == piece and board[c—1][r+1] == piece and board[c-
2] [r+2] == piece and board[c—3] [r+3] == piece:

return True

def reach_1 (board):
#HFEO YU — TR
a1 EHDOAH
for r in range (ROW_COUNT-3) :
if board[0][r] == 0 and board[0][r+1] == 1 and board[0][r+2] == 1 and board[0] [r+3]

return True
elif board[0][r] == 1 and board[0][r+1] == 0 and board[0] [r+2] == 1 and board[0] [r+3]

return True
elif board[0][r] == 1 and board[0][r+1] == 1 and board[0] [r+2] == 0 and board[0] [r+3]

return True
elif board[0][r] == 1 and board[0][r+1] == 1 and board[0][r+2] == 1 and board[0] [r+3]

return True

= o 2 BE A LI
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for r in range (ROW_COUNT-3) :
for ¢ in range (1, COLUMN_COUNT) :
if board[c][r] == 0 and board[c][r+1] == 1 and board[c][r+2] ==
board[c] [r+3] == 1 and board[c-1][r] != 0:
return True
elif board[c][r] == 1 and board[c][r+l] == 0 and board[c][r+2] == 1 and
board[c][r+3] == 1 and board[c-1][r+1] != 0:
return True

elif board[c][r] ==

[u—

and

1 and board[c][r+1] == 1 and boardl[c][r+2] == 0 and
board[c][r+3] == 1 and board[c-1][r+2] != 0:
return True
elif boardlc][r] == 1 and board[c][r+1] == 1 and board[c][r+2] == 1 and
board[c][r+3] == 0 and board[c-1][r+3] != 0:

return True

i
for r in range (ROW_COUNT) :
for ¢ in range (COLUMN_COUNT-3) :
if board[c][r] == 1 and board[ctl][r] == 1 and board[c+2][r] == 1 and
board[c+3][r] == 0:

return True

BETE BN Y A (1 By B~ A& D F)
for r in range (ROW_COUNT-3) :
if board[0][r] == 0 and board[1][r+1] == 1 and board[2][r+2] == 1 and board[3][r+3]

return True
elif board[0][r] == 1 and board[1][r+1] == 0 and board[2] [r+2] == 1 and board[3] [r+3]
== 1 and board[0][r+1] != 0:
return True
elif board[0][r] == 1 and board[1][r+1] == 1 and board[2] [r+2] == 0 and board[3] [r+3]
== 1 and board[1][r+2] != 0:
return True
elif board[0][r] == 1 and board[1][r+1] == 1 and board[2] [r+2] == 1 and board[3] [r+3]
== 0 and board[2][r+3] != 0:

return True

HATE B30 A (1 BeH ~ AR&H LIS
for r in range (ROW_COUNT-3) :
for ¢ in range (1, COLUMN_COUNT-3) :
if board[c][r] == 0 and board[c+1][r+1] == 1 and board[c+2][r+2] == 1 and
board[c+3][r+3] == 1 and board[c-1][r] != 0:
return True
elif board[c][r] == 1 and board[c+1][r+l1] == 0 and board[c+2][r+2] == 1 and
board[c+3][r+3] == 1 and board[c][r+1] != 0:
return True
elif board[c][r] == 1 and board[c+1][r+1] == 1 and board[c+2][r+2] == 0 and
board[c+3][r+3] == 1 and board[c+1][r+2] != 0:
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return True
elif board[c][r] == 1 and board[c+1][r+1] == 1 and board[c+2][r+2] == 1 and
board[c+3] [r+3] == 0 and board[c+2] [r+3] = 0:

return True

HATE TR0 7 A0 BH~ AREHDRH)
for r in range (ROW_COUNT-3) :
if board[3][r] == 0 and board[2][r+1] == 1 and board[1][r+2] == 1 and board[0] [r+3]
== 1 and board[2][r] != 0:
return True
elif board[3][r] == 1 and board[2][r+1] == 0 and board[1][r+2] == 1 and board[0] [r+3]
== 1 and board[1][r+1] != 0:
return True
elif board[3][r] == 1 and board[2] [r+1] == 1 and board[1] [r+2] == 0 and board[0] [r+3]
== 1 and board[0][r+2] != 0:
return True
elif board[3][r] == 2 and board[2] [r+1] == 2 and board[1] [r+2] == 2 and board[0] [r+3]

return True

BATE T30 FF 4 (1 B H ~ AT LIS
for r in range (ROW_COUNT-3) :
for ¢ in range (4, COLUMN_COUNT) :
if board[c][r] == 0 and board[c-1][r+1] == 1 and board[c—2] [r+2] == 1 and board[c-
3]1[r+3] == 1 and board[c-1][r] != 0:
return True
elif board[c][r] == 1 and board[c-1][r+1] == 0 and board[c-2][r+2] == 1 and
board[c-3][r+3] == 1 and board[c-2] [r+1] != 0:
return True
elif boardlc][r] == 1 and board[c-1][r+1] == 1 and board[c-2][r+2] == 0 and
board[c-3][r+3] == 1 and board[c-3] [r+2] != 0:
return True
elif boardlc][r] == 1 and board[c-1][r+1] == 1 and board[c-2][r+2] == 1 and
board[c-3][r+3] == 0 and board[c—4] [r+3] != 0:

return True

board = create_board ()
print_board (board)
game_over = False

turn = 0
turn_count = 0 #% — %%

while not game_over:
#Player 1 O
if turn == 0:

while True:
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row = int(input ("Playerl Make Your Selection(0-6)”))
if board[5] [row] == 0:
break

if is_valid location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 1)
if winning_move (board, 1):
print ("Playerl Wins!”)
game_over = True

break

#Player 2 0%
else:
Bl A= HOa~DESS
if turn_count == 1:
if board[0][0] == 1 or board[0][2] == 1 or board[0][3] == 1 or board[0][4] ==
or board[0][6] == 1:
row = 3
print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
elif board[0][1] ==
row = 2
print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
elif board[0][5] == 1:
row = 4
print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board, row)

drop_piece(board, col, row, 2)

o X —  HOa~vOEE)
elif turn_count == 3:
Bl X = BIZEFREW 2~
if board[0][0] == 1:
#2 Z— BIZEFEIPEW Y
if board[0][1] == 1 or board[0][2] =
== 1 or board[0][5] == 1:

row = 3

1 or board[1][3] == 1 or board[0][4]

print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board, row)

drop_piece (board, col, row, 2)
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elif board[1][0] == 1:
row = 4
print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 2)
elif board[0][6] == 1:
row = 2
print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board, row)

drop_piece(board, col, row, 2)

#l #— BIZEFPEW Y
elif board[0][1] == 1:
B2 A= RICEFNRENZa~Y
if board[0][0] == 1 or board[1][2] == 1 or board[0][4] == 1 or board[0] [5]

row = 2
print ("Player2 Selected:”, row)
if is_valid_location (board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 2)
elif board[1][1] == 1:
row = 1
print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 2)
elif board[0][3] == 1:
row = 3
print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 2)
elif board[0][6] == 1:
row = b
print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board, row)

drop_piece (board, col, row, 2)

Bl 2= BICEFREN A~
elif board[0][2] == 1:
#2 ¥ — 2 BIZEFENEW o~
if board[0][0] == 1 or board[0][1] == 1 or board[1][3] == 1 or board[0][4]
== 1 or board[0][5] == 1 or board[0][6] == 1:

row = 3
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print ("Player2 Selected:”, row)

if is_valid location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)

elif board[1][2] == 1:

row = 2

print ("Player2 Selected:”, row)

if is_valid_location(board, row):
col = get_next_open_row(board, row)

drop_piece (board, col, row, 2)

Bl X = BICEFREW 2~
elif board[0][3] == 1:
#2 Z—HIZEFVREW Y
if board[0][0] == 1 or board[0][1] == 1 or board[0][4] == 1:
row = 2
print ("Player2 Selected:”, row)
if is_valid location (board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
elif board[0][2] == 1 or board[0][5] == 1 or board[0][6] == 1:
row = 4
print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 2)
elif board[2][3] == 1:
row = 3
print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board, row)

drop_piece (board, col, row, 2)

#l #— HIZETFRE W -~
elif board[0][4] == 1:
#2 X — L BIZEFENE W -a<
if board[0][0] == 1 or board[0][1] == 1 or board[0][2] == 1 or board[1][3]
== 1 or board[0][5] == 1 or board[0][6] == 1:
row = 3
print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 2)
elif board[1][4] == 1:
row = 4
print ("Player2 Selected:”, row)
if is_valid_location(board, row):

col = get_next_open_row(board, row)
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drop_piece (board, col, row, 2)

Bl 2= BICEFREN A~
elif board[0][5] == 1:
#2 ¥ — 2 BIZETNEW-a~
if board[0][1] == 1 or board[0][2] ==

row = 4
print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board,
drop_piece (board, col, row, 2)
elif board[0][0] == 1:
row = 1
print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board,
drop_piece (board, col, row, 2)
elif board[0][3] == 1:
row = 3
print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board,
drop_piece (board, col, row, 2)
elif board[1][5] == 1:
row = b
print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board,

drop_piece (board, col, row, 2)

Bl X = HICEFNENZa Y
elif board[0][6] == 1:
#2 ¥ — 2 BIZEFENEW o~
if board[0][1] 1 or board[0][2] ==
== 1 or board[0][5] :

row = 3
print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board,
drop_piece (board, col, row, 2)
elif board[0][0] == 1:
row = 4
print ("Player2 Selected:”, row)
if is_valid_location (board, row):
col = get_next_open_row(board,
drop_piece (board, col, row, 2)
elif board[1][6] == 1:
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1 or board[1][4] == 1 or board[0][6]

Tow)

Tow)

Tow)

Tow)

1 or board[1][3] 1 or board[0] [4]

TOow)

Tow)



row = 2
print ("Player2 Selected:”, row)
if is_valid_location(board, row):
col = get_next_open_row(board, row)

drop_piece (board, col, row, 2)

elif 3 < turn_count: HFEFID 2 Z — 1 LIADKE
#3 2 (1 Be B~ AMEHDRAE D Fr)
for r in range (ROW_COUNT-3) :
if board[0][r] == 0 and board[0][r+1] == 2 and board[0][r+2] == 2 and

board[0] [r+3] == 2:

Tow = T
col =0

drop_piece(board, col, row, 2)
winning_move (board, 2)

print ("Player2 Wins!”)
game_over = True

break

elif board[0][r] == 2 and board[0][r+1] == 0 and board[0][r+2] == 2 and

board[0] [r+3] == 2:

row = r+l

col =0

drop_piece(board, col, row, 2)
winning_move (board, 2)

print ("Player2 Wins!”)
game_over = True

break

elif board[0][r] == 2 and board[0][r+1] == 2 and board[0][r+2] == 0 and

board[0] [r+3] == 2:

row = r+2

col =0

drop_piece(board, col, row, 2)
winning_move (board, 2)

print ("Player2 Wins!”)
game_over = True

break

elif board[0][r] == 2 and board[0][r+1] == 2 and board[0][r+2] == 2 and

board[0] [r+3] == 0:

row = r+3

col =0

drop_piece(board, col, row, 2)
winning_move (board, 2)

print ("Player2 Wins!”)
game_over = True

break

#3922 BFELI%)
#4 SHOVAOETIZa~RNb 0% (LIS 1 BB~ AEHDOREDH] RN
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TERRID)
for r in range (ROW_COUNT-3) :
for ¢ in range (1, COLUMN_COUNT) :
if board[c][r] == 0 and board[c][r+1] == 2 and board[c][r+2] == 2 and
board[c] [r+3] == 2 and board[c-1][r] != 0:
row = r
col = ¢
drop_piece (board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and board[c][r+1] == 0 and board[c][r+2] == 2 and
board[c] [r+3] == 2 and board[c-1][r+1] != 0:
row = r+l
col = ¢
drop_piece (board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and board[c][r+1] == 2 and board[c][r+2] == 0 and
board[c][r+3] == 2 and board[c-1][r+2] != 0:
row = r+2
col = ¢
drop_piece (board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and board[c][r+1] == 2 and board[c][r+2] == 2 and
board[c][r+3] == 0 and board[c-1][r+3] != 0:
row = r+3
col = ¢
drop_piece (board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break

#ivertical # 7
for r in range (ROW_COUNT) :
for ¢ in range (COLUMN_COUNT-3) :
if board[c][r] == 2 and board[c+1][r] == 2 and board[c+2][r] == 2 and
board[c+3] [r] == 0:
row = r
col = ¢t+3

drop_piece (board, col, row, 2)
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winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break

HHE ER Y 77 A (1 BE A~ A& B DPRIE D H)
for r in range (ROW_COUNT-3) :
if board[0][r] == 0 and board[1][r+1] == 2 and board[2][r+2] == 2 and
board[3] [r+3] == 2:
TOW = T
col =0
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[0][r] == 2 and board[1][r+1] == 0 and board[2][r+2] == 2 and
board[3] [r+3] == 2 and board[0][r+1] != O:
row = r+l
col =1
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[0][r] == 2 and board[1][r+1] == 2 and board[2][r+2] == 0 and
board[3][r+3] == 2 and board[1][r+2] != 0:
row = r+2
col = 2
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[0][r] == 2 and board[1][r+1] == 2 and board[2][r+2] == 2 and
board[3] [r+3] == 0 and board[2][r+3] != 0:
row = r+3
col =3
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True

break

#ATE B30 A (1 BR B~ A& A LI
for r in range (ROW_COUNT-3) :
for ¢ in range (1, COLUMN_COUNT-3) :
if board[c][r] == 0 and board[ct+1][r+1] == 2 and board[c+2] [r+2] ==
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and board[c+3][r+3] == 2 and board[c-1][r] != 0:
Tow = T
col = ¢
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and board[c+1][r+1] == 0 and board[c+2][r+2] ==
and board[c+3] [r+3] == 2 and board[c][r+1] != 0:
row = r+l
col = ctl
drop_piece (board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and board[c+1][r+1] == 2 and board[c+2] [r+2] == 0
and board[c+3][r+3] == 2 and board[c+1][r+2] != O:
row = r+2
col = ct+2
drop_piece (board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and board[c+1][r+1] == 2 and board[c+2][r+2] == 2
and board[c+3] [r+3] == 0 and board[c+2][r+3] != 0:
row = r+3
col = c¢+3
drop_piece (board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True

break

HERE TR0 7T A (1 BEE ~ A& B DRE D H)
for r in range (ROW_COUNT-3) :

if board[3][r] == 0 and board[2][r+1] == 2 and board[1][r+2] == 2 and
board[0] [r+3] == 2 and board[2][r] != 0:
row = r
col =3

drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[3][r] == 2 and board[2][r+1] == 0 and board[1][r+2] == 2 and
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board[0][r+3] == 2 and board[1][r+1] != 0:

row = r+l

col =2

drop_piece(board, col, row, 2)

winning_move (board, 2)

print ("Player2 Wins!”)

game_over = True

break

elif board[3][r] == 2 and board[2][r+1] == 2 and board[1][r+2] == 0 and

board[0] [r+3] == 2 and board[0][r+2] != O:

row = r+2

col =1

drop_piece(board, col, row, 2)

winning_move (board, 2)

print ("Player2 Wins!”)

game_over = True

break

elif board[3][r] == 2 and board[2][r+1] == 2 and board[1][r+2] == 2 and

board[0] [r+3] == 0:

row = r+3

col =0

drop_piece(board, col, row, 2)

winning_move (board, 2)

print ("Player2 Wins!”)

game_over = True

break

BEJE T30 FF 4 (1 BeH ~ AfE T LIS
for r in range (ROW_COUNT-3) :
for ¢ in range (4, COLUMN_COUNT) :
if board[c][r] == 0 and boardlc-1][r+1] == 2 and board[c-2][r+2] ==
and board[c-3][r+3] == 2 and board[c-1][r] != 0:
row = r
col = ¢
drop_piece (board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and board[c-1][r+1] == 0 and board[c-2][r+2] ==
and board[c-3][r+3] == 2 and board[c-2][r+1] != 0:
row = r+l
col = c-1
drop_piece(board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True

break
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elif board[c][r] == 2 and board[c-1][r+1] == 2 and board[c-2][r+2] == 0
and board[c-3] [r+3] == 2 and board[c-3][r+2] != 0O:
row = r+2
col = ¢2
drop_piece (board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break
elif board[c][r] == 2 and board[c-1][r+1] == 2 and board[c-2] [r+2] == 2
and board[c-3][r+3] == 0 and board[c—4][r+3] != 0:
row = r+3
col = ¢-3
drop_piece (board, col, row, 2)
winning_move (board, 2)
print ("Player2 Wins!”)
game_over = True
break

if not winning move (board, 2) and reach_1(board): #AHFN U —F 0 F S 7-H, &
(ZEWTE <
a1 EHDOAH
for r in range (ROW_COUNT-3) :
if board[0][r] == 0 and board[0][r+1] == 1 and board[0][r+2] == 1 and
board[0] [r+3] == 1:
Tow = T
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[0][r] == 1 and board[0][r+1] == 0 and board[0][r+2] == 1 and
board[0] [r+3] == 1:
row = r+l
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[0][r] == 1 and board[0][r+1] == 1 and board[0][r+2] == 0 and
board[0] [r+3] == 1:
row = r+2
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[0][r] == 1 and board[0][r+1] == 1 and board[0][r+2] == 1 and
board[0] [r+3] == 0:
row = r+3

if is_valid_location(board, row):
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col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break

= = 2 BE A LI
for r in range (ROW_COUNT-3) :
for ¢ in range (1, COLUMN_COUNT) :
if board[c][r] == 0 and board[c][r+1] == 1 and board[c][r+2] == 1
and board[c][r+3] == 1 and board[c-1][r] != 0:
TOW = T
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[c][r] == 1 and board[c][r+1] == 0 and board[c][r+2] == 1
and board[c][r+3] == 1 and board[c-1][r+1] != 0:
row = r+l
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[c][r] == 1 and board[c][r+1] == 1 and board[c] [r+2] ==
and board[c] [r+3] == 1 and board[c-1][r+2] != 0:
row = r+2
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[c][r] == 1 and board[c][r+1] == 1 and board[c][r+2] == 1
and board[c][r+3] == 0 and board[c-1][r+3] != 0:
row = r+3
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break

b A
for r in range (ROW_COUNT) :
for ¢ in range (COLUMN_COUNT-3) :
if board[c][r] == 1 and board[c+1][r] == 1 and board[c+2][r] == 1
and board[c+3][r] == 0:
TOW = T
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break

#AJE B30 T T A (1 BEH ~ AfEH D)
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for r in range (ROW_COUNT-3) :
if board[0][r] == 0 and board[1][r+1] == 1 and board[2][r+2] == 1 and
board[3] [r+3] == 1:
row = t
if is_valid_location(board, row):
col = get_next_open_row(board, row)

drop_piece(board, col, row, 2)

break
elif board[0][r] == 1 and board[1][r+1] == 0 and board[2][r+2] == 1 and
board[3] [r+3] == 1 and board[0][r+1] != 0:
row = r+l

if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece (board, col, row, 2)
break

elif board[0][r] == 1 and board[1][r+1] == 1 and board[2][r+2] == 0 and
board[3][r+3] == 1 and board[1][r+2] != 0:

row = r+2

if is_valid_location(board, row):
col = get_next_open_row(board, row)

drop_piece(board, col, row, 2)

break
elif board[0][r] == 1 and board[1][r+1] == 1 and board[2][r+2] == 1 and
board[3][r+3] == 0 and board[2] [r+3] != 0:
row = r+3

if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break

BAJH 230 T 4 (1 BeH ~ AT LIAM)
for r in range (ROW_COUNT-3) :
for ¢ in range (1, COLUMN_COUNT-3) :
if board[c][r] == 0 and board[c+1][r+1] == 1 and board[c+2] [r+2] ==
1 and board[c+3] [r+3] == 1 and board[c-1][r] != 0:
TOW = T
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[c][r] == 1 and board[ct+1][r+1] == 0 and board[c+2] [r+2]
== 1 and board[c+3][r+3] == 1 and board[c][r+1] != 0:
row = r+l
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[c][r] == 1 and board[c+1][r+1] == 1 and board[c+2] [r+2]
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== 0 and board[c+3] [r+3] == 1 and board[c+1][r+2] != 0:
row = r+2
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break

elif board[c][r] == 1 and board[c+1][r+1] == 1 and board[c+2] [r+2]

== 1 and board[c+3][r+3] == 0 and board[c+2][r+3] |= O:
row = r+3
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break

BEHTRY T A1 BH~ A EHDH)
for r in range (ROW_COUNT-3) :

if board[3][r] == 0 and board[2][r+1] == 1 and board[1][r+2] ==

board[0] [r+3] == 1 and board[2][r] != O:
row =t
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[3][r] == 1 and board[2][r+1] == 0 and board[1] [r+2]
board[0] [r+3] == 1 and board[1][r] != 0:
row = r+l
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break

elif board[3][r] == 1 and board[2][r+1] == 1 and board[1] [r+2] ==

board[0][r+3] == 1 and board[0][r+2] != 0:
row = r+2
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break

elif board[3][r] == 2 and board[2][r+1] == 2 and board[1][r+2] ==

board[0] [r+3] == 0:
row = r+3
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break

HEE TR A (1 BB~ AfEA LS
for r in range (ROW_COUNT-3) :
for ¢ in range (4, COLUMN_COUNT) :
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if board[c][r] == 0 and board[c-1][r+1] == 1 and board[c-2] [r+2] ==
1 and board[c-3][r+3] == 1 and board[c-1][r] != 0:
ToWw = T
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[c][r] == 1 and board[c-1][r+1] == 0 and board[c—2] [r+2]
== 1 and board[c-3][r+3] == 1 and board[c-2][r+1] |= 0:
row = r+l
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif boardl[c][r] == 1 and board[c-1][r+1] == 1 and board[c-2] [r+2]
== 0 and board[c-3][r+3] == 1 and board[c-3][r+2] != O:
row = r+2
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break
elif board[c][r] == 1 and board[c-1][r+1] == 1 and board[c-2] [r+2]
== 1 and board[c-3][r+3] == 0 and board[c-4] [r+3] != 0:
row = r+3
if is_valid_location(board, row):
col = get_next_open_row(board, row)
drop_piece(board, col, row, 2)
break

elif not winning move (board, 2) and not reach_1 (board):
BRTHEC S or AT 2RLISMT T o & A
while True:
row = random. randrange (7)
print ("Player2 Selected:”, row)
if board[5] [row] == 0:
break
if is_valid_location(board, row):
col = get_next_open_row(board, row)

drop_piece(board, col, row, 2)
print_board (board)
turn += 1

turn = turn % 2

turn_count += 1
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