
 In Proc. of the 9th IEEE/ACIS International Conference on Computer and Information Science

(ICIS 2010), pp.723-728, August, 2010 (Yamagata, Japan)

Modeling Software Project Monitoring with Stakeholders

Masateru Tsunoda, Tomoko Matsumura and Ken-ichi Matsumoto

Graduate School of Information Science

Nara Institute of Science and Technology

Nara, Japan

{masate-t, tomoko-m, matumoto}@is.naist.jp

Abstract—Recently, software size becomes larger, and

consequently, not only a software developer but also a software

purchaser suffers considerable losses by software project

failure. So avoiding project failure is also important for

purchasers. Project monitoring with a purchaser and a

developer (stakeholders) is expected for the purchaser to

suppress risk of project failure. It is performed by sharing

software metrics during the project for the purchaser to grasp

the status of the project. Although there are some software

measurement models, they cannot describe two kinds of

metrics which are used to monitor projects with stakeholders.

One metric is to indicate project goal achievement after

finishing project. The other one is to measure to progress

toward the goal. In addition, the models cannot represent

countermeasures when symptoms of project failure are found.

We propose the model for project monitoring with

stakeholders. The model is based on the measurement

information model defined by ISO/IEC 15939, and added

stakeholder’s goal, key goal indicator (KGI), key performance

indicator (KPI), corrective action, and check timing. With our

model, project monitoring with stakeholders can be described

more rigorously.

Keywords-risk management; measurement; stakeholder;

plan-do-check-act cycle; notation

I. INTRODUCTION

Recently, software size becomes larger, since software is
used in various situations and needed for more functions.
Consequently, not only a software developer but also a
software purchaser suffers considerable losses when
software project is failed (delay of delivery date, project cost
overrun, or insufficient quality of developed software are
occurred). So avoiding project failure is more important for
purchasers than before. Project monitoring with a purchaser
and a developer is expected to be effective way for the
purchaser to suppress risk of project failure [10], especially
when developer’s project management skill is insufficient.
Project monitoring with a purchaser and a developer is
performed by sharing software metrics during the project for
the purchaser to grasp the status of the project.

Besides in recent years, software developers outsource a
part of software development to sub contractors (e.g.
offshore developers in India or China) because of lack of
human resources, or pressure of restraining software
development cost. However, sub contractors’ project failure
sometimes causes primary contractor’s project failure.

Project monitoring with a primary constructor (purchaser)
and a sub contractor (developer) is also expected to be
effective in the case. In this paper, we call a purchaser, a
developer, a primary constructor, and a sub constructor as
stakeholders.

Appropriate model of software project monitoring with
stakeholders is necessary to perform it rigorously. The model
defines elements of project monitoring activities and their
relationships. More intuitively, the model clarifies how to
perform project monitoring. The efficiency of the model is
similar to that of the entity-relationship model for database
[3]. The model is required to describe project monitoring
activities. Applying plan-do-check-act cycle, project
monitoring consists of four activities, namely deciding which
metrics are measured (plan), collecting values of metrics (do),
analyzing values of metrics (check), and performing
countermeasures based on the analysis (act). For instance,
when “keep software quality high” is set as the project goal,
code coverage is decided to be monitored on plan phase, it is
measured on do phase, its value is compared with a reference
value on check phase, and on act phase, modules are retested
if code coverage is lower than the reference value. This is
because low code coverage means testing is insufficient, and
it causes remaining faults.

Although there are some models for software
measurement [4][11][13][15][16], the models are not enough
to describe plan phase. Two kinds of metrics should be set to
monitor projects with stakeholders in the plan phase, but the
models do not explicitly represent the metrics. One metric is
to indicate whether the project goal is achieved or not when
project is finished. For instance, defect density (defect
density = number of defects / program size) after release is
used as the metric. Without the metric, it is difficult for
stakeholders to agree to whether the goal is achieved or not.
The other metric is to measure to progress toward the goal.
For example, code coverage is used as the metric. Using the
metric, a purchaser can understand status of project
quantitatively in midstream of the project.

In addition, the models cannot represent activities of act
phase. For example, Chirinos et al. [4] proposed the software
measurement model which defines elements such as type of
metrics, range of value, and measurement method, but it
does not include elements related to act phase. Description of
activities of act phase is effective to derive the commitment
of the developer that it surely performs countermeasures. It is
expected to decrease risk of project failure.

 In Proc. of the 9th IEEE/ACIS International Conference on Computer and Information Science

(ICIS 2010), pp.723-728, August, 2010 (Yamagata, Japan)

We propose a new model for project monitoring with
stakeholders. Our model is based on measurement
information model, which is defined in ISO/IEC 15939 [11].
We added key goal indicator (KGI), key performance
indicator (KPI), corrective action, and check timing to the
model. The KGI and the KPI are used in the area of business
management [18]. The KGI is a metric which indicates
whether the goal is achieved or not. The KPI is a metric
which indicates whether progress toward the goal is smooth
or not. Corrective action explains how to act when KPIs
show inadequate values. It is adopted from the Hazard
Analysis and Critical Control Point (HACCP) [5], which is
management system for food safety. Check timing shows
when KGI and KPIs are checked by stakeholders.

Effectiveness of our model is as follows. (1) is
effectiveness for a developer (sub constructor), (2) and (3)
are for a purchaser (primary contractor), and (4) is for all
stakeholders.

(1) Our model can be used as a template of the project

monitoring plan. The developer can make a project

monitoring plan more easily and more rigorously.

(2) With the KPI, the purchaser grasps status of the

project easily.

(3) Corrective action derives the commitment of the

developer that it surely reacts to issues which are observed

by KPIs.

(4) Stakeholders can agree the project monitoring plan

more smoothly, because the plan made with our model

explicitly describes how to monitoring the project.
In what follows, Section II clarifies requirements for

modeling software project monitoring with stakeholders.
Section III explains structure of the model. Section IV shows
an application of the model. Section V introduces related
work. In the end, Section VI concludes the paper with a
summary.

II. REQUIMENTS FOR MODELING PROJECT MONITORING

WITH STAKEHOLDERS

We identify requirements for the model of project
monitoring with stakeholders by seeing activities of it.
Applying to plan-do-check-act cycle, project monitoring
consists of four activities.

In the plan phase, goals of project monitoring are set, and
metrics which relate to the goals are identified. GQM (Goal-
Question-Metric) approach [1] is one of the methods to

identify the metrics. For example, “keep software quality
high” is set as the goal, and code coverage and defect density
are settled as the metrics. Additionally, to monitor projects
with stakeholders, a metric which directly indicates whether
the goal is attained or not is decided. For instance, defect
density after release is set as the metric. Note that goals of
each stakeholder are sometimes different. For instance, it is
possible that “suppress development cost” is set as the goal
of a developer, but it is not set as that of a purchaser, when
software price is fixed by contract.

In the do phase, metrics are collected with automated
measurement tools or manual measurement, and stored. For
instance, code coverage is measured by the measurement
tool, and number of defects is manually measured in the
testing phase. Some metrics are derived from several metrics.
For example, defect density is calculated by dividing number
of defects by program size (source lines of code).

In the check phase, collected metrics are analyzed by
comparison of reference values, some graphs, or
mathematical models. Analysis results show process (e.g.
testing phase) or products (e.g. source code) are normal or
abnormal. For example, a value of code coverage is
compared with a reference value, and when the measured
value is lower than the reference value, testing is regarded as
insufficient. To monitor a project with stakeholders,
analyzing metrics is scheduled on particular timing. For
instance, defect density on unit testing, integration testing,
and system testing are checked at the end of each phase with
stakeholders.

In the act phase, when the results of the check phase
indicate that process or products are abnormal,
countermeasures are conducted. For example, when values
of code coverage of some modules are lower than a reference
value, they are retested.

To describe project monitoring with stakeholders, a
model is required to present:

(R1) Goals of each stakeholder separately, and a metric
which directly indicates whether the goal is achieved or not.

(R2) Distinction between a metric indicating goal
achievement and metrics indicating progress toward the goal.

(R3) How to collect metrics.
(R4) How to analyze metrics.
(R5) Timing of analyzing metrics with stakeholders.
(R6) Countermeasures to correct abnormal process or

products identified on check phase.
Fig. 1 shows plan-do-check-act cycle of project

monitoring and requirements corresponding each phase. (R1),
(R2) and (R5) are specified requirements for a project
monitoring model with stakeholders.

III. STRUCTURE OF PROJECT MONITORING MODEL

The model of project monitoring with stakeholders is
based on the measurement information model, which is
defined in ISO/IEC 15939 [11]. The model defines activities
of analysis and measurement with hieratical structure. The
reason of adopting the model as a basis of our model is that
the model satisfies requirements (R3) and (R4) stated in
section II in just proportion.

(R4), (R5)

(R6)

(R1), (R2)

Conducting

corrective action

Act

Collecting data

Do

Planning

data collection

Plan

Analyzing data

Check

(R3)

Figure 1. Plan-do-check-act cycle of project monitoring and
requirements corresponding each phase.

 In Proc. of the 9th IEEE/ACIS International Conference on Computer and Information Science

(ICIS 2010), pp.723-728, August, 2010 (Yamagata, Japan)

Fig. 2 shows the structure of the measurement
information model and examples of the elements. In the
example, number of defects at unit testing and program size
are measured as base measures according to measurement
methods. Defect density at unit testing is derived as the
derived measure according to the measurement function. The
indicator which is computed by analysis model is defect
density at unit testing, and it is as same as derived measure in
this case. Based on the decision criteria, it is settled whether
defect density at unit testing is abnormal or not.

Fig. 3 illustrates the structure of the model of project
monitoring with stakeholders using the UML (Unified
Modeling Language). The model has hieratical structure in
the same way as the measurement information model.
Stakeholder’s goal, key goal indicator (KGI), key
performance indicator (KPI), check timing, and corrective
action are added to the measurement information model. The
KGI and the KPI inherit characteristics of the indicator.
Lower layer than the analysis model is same as the
measurement information model, so they are omitted in the
figure. Detail of each element is explained below.

A. Stakeholder’s goal

Stakeholder’s goal represents an aim which a stakeholder
intends to attain through project monitoring. When
monitoring project with a purchaser and a developer,
stakeholder’s goal is called purchaser’s goal or developer’s
goal. In the same way, when monitoring project with a
primary contractor and a sub contractor, stakeholder’s goal is
called primary contractor’s goal or sub contractor’s goal.

This element is defined to satisfy requirement (R1).
Concept of stakeholder’s goal is almost same as the goal of
GQM. The goals are written by plain text. They can also be
written by the goal template proposed by Fuggetta et al. [6].

When applying the model, at least two stakeholders’ goal
is needed. For instance, when monitoring project with a
purchaser and a developer, at least one purchaser’s goal and
one developer’s goal are set. It is possible that goals of

different stakeholder are same. For example, stakeholder’s
goal is set as follows:

 Purchaser’s goal and developer’s goal-1: keep
software quality high.

 Developer’s goal-2: suppress increasing of software
cost.

In this case, purchaser’s goal and developer’s goal-1 are
same.

B. Key goal indicator

The key goal indicator (KGI) is a metric which indicates
whether the goal is achieved or not. With a KGI,
stakeholders consent to final status of the goal. This element
is defined to satisfy requirements (R1) and (R2). Originally,
The KGI is used in the business management area [18]. The
KGI is treated as an indicator of measurement information
model. That is, the KGI is computed from base measures
using an analysis model, and interpreted by decision criteria.

Every stakeholder’s goal has only one KGI. There is no
stakeholder’s goal which does not have a KGI. Not using
multiple KGIs for a goal makes judgment of goal
achievement clear. If a stakeholder evaluates a goal from
multiple viewpoints, set composite metric as a KGI, or
divide the goal in more detail. For instance, when “enhance
software quality with respect to availability” is set as
stakeholder’s goal, mean time to repair (MTTR) and mean
time between failures (MTBF) are not used as KGIs, but
operation rates (operation rates = MTBF / (MTBF + MTTR))
is used as a KGI. Or “enhance software quality with respect
to reliability” and “enhance software quality with respect to
serviceability” are set as stakeholder’s goals, and MTBF and
MTTR are set as a KGI for each goal.

C. Key process indicator

The key process indicator (KPI) is a metric which
indicates whether progress toward the goal is smooth or not.
Keeping values of KPIs sound is expect to bring
achievement of the KGI. This element is defined to satisfy
requirement (R2). With the KPI, a purchaser grasps status of
the project easily. Same as the KGI, the KPI is used in the

Figure 3. Structure of the model of project monitoring with

stakeholders.
Count

number of

found defects

Number of defects

at unit testing

Number of defects at

unit testing / program size

Indicator < a : Too

low defect density

Indicator > b : Too

high defect density

Measure

source lines

of code

Program size

(Use derived

measure)

Defect density

at unit testing

Defect density

at unit testing

Measurement

method

Base

measure

Measurement

function

Analysis model

Indicator

Decision

criteria

Derived

measure

Figure 2. Structure of the measurement information model [11].

 In Proc. of the 9th IEEE/ACIS International Conference on Computer and Information Science

(ICIS 2010), pp.723-728, August, 2010 (Yamagata, Japan)

business management area, and a KPI is treated as an
indicator. Every KGI has at least one KPI. There is no KGI
which does not have a KPI. It is possible that particular KPIs
relate to two or more different KGIs.

When “keep software quality high” is set as stakeholder’s
goal and defect density after release is set as a KGI,
candidates of KPIs are code coverage, software reliability
growth model (SRGM) [17], and so on.

D. Check timing

Check timing shows when stakeholders check KGIs and
KPIs. This element is defined to satisfy requirement (R5).
KGIs are generally checked at the end of the project, but
sometimes at different timing. For Example, when a KGI is
defect density after 6 months of release, check timing of the
KGI is after 6 months of release.

Check timing of a KPI is settled as a point such as the
end of certain phase or frequency. For instance, when
stakeholder’s goal is “Prevent delaying software release” and
program size is set as a KPI to grasp progress, check timing
of the KPI can be set as frequency, that is “Check program
size every week.” Also, when stakeholder’s goal is “keep
software quality high” and code coverage is set as a KPI,
check timing of the KPI can be set as a point, i.e. “Check
code coverage after unit testing.”

Every KGI and KPI has one checking time. When a KPI
is checked several times, check timing is described as
“Check number of defects after unit testing and integration
testing,” for example. Check timing is described for each
KGI and KPI by plain text, or also illustrated along with data
measurement timing by a figure. An example of the figure is
exhibited in section IV.

Note that timing of data collection and check timing of a
KPI can be different. For instance, when transition of total
lines of code is used as a KPI, it is reasonable that timing of
data collection is set as every day, and check timing is set as
every week to lessen effort of checking the KPI. Moreover,
each stakeholder’s check timing can be different respectively.
For example, it is not uncommon that developer’s check
timing of defect density at unit testing is set as the middle of
unit testing and the end of unit testing, and purchaser’s one is
set as only the end of unit testing, because it would be better
that corrective actions are performed by the developer before
the purchaser checks KPIs.

E. Corrective action

Corrective action describes how to remediate condition
of project/product when a KPI indicates abnormal condition.

This element is defined to satisfy requirement (R6). Concept
of corrective action is almost same as that of the Hazard
Analysis and Critical Control Point (HACCP) [5],
management system for food safety. Corrective action
derives the commitment of a developer that it surely reacts to
issues which are observed by KPIs.

Every KPI has one corrective action. The KGI does not
have corrective action because the KGI is checked after a
project finished. Detailed corrective actions are itemized for
each abnormal case classified by decision criteria. For
example, when defect density at integration testing is set as a
KPI, corrective action is described as follows:

 When a value of the KPI is larger than upper limit of
reference value:
o Unit testing of the subsystem is conducted again.

 When a value of the KPI is smaller than lower limit
of reference value:
o Confirm number of test cases for the subsystem,

and test the subsystem again.

IV. APPLICATION OF PROJECT MONITORING MODEL

This section shows an application of our project
monitoring model and notations for the model. The
application assumes that project is monitored by a purchaser
and a developer. The purchaser and the developer have a
common goal about quality. Note that this example is
derived from our consideration, not from an industrial case.

Indicator Structure Diagram (Fig. 4) illustrates
relationships of the stakeholder’s goal, the KGI, and KPIs.
Indicator Description Chart (Table I) shows KGI/KPIs, base
measures, measurement methods, measurement functions, an
analysis model, decision criteria, and corrective actions.
Monitoring Activity Diagram (Fig. 5) represents check
timing and data collection timing. Dots are used when check
or measurement is done at particular point, and lines are used
when check or measurement is done at certain frequency.

A stakeholder’s goal and a KGI are settled based on
stakeholder’s discussion. KPIs are settled by stakeholder’s
experiences, consideration, or knowledge of software
engineering research. For instance, this example uses
software reliability growth model (SRGM) as one of KPIs
for the KGI “defect density after 6 months of release,”
because when SRGM estimates remaining defects as low,
defect density after 6 months of release is anticipated to be
low. Decision criteria and corrective actions are decided in a
similar way. Note that when a purchaser does not have
enough knowledge or experiences about software
development, KPIs are mainly chosen by a developer.

From the application, it can be concluded that our model
has capability to describe how to monitoring project with
stakeholders accurately. The capability is expected to help
agreement of project monitoring between stakeholders, and
to assist planning it as a template.

V. RELATED WORK

Although there are some models which relates to
measurement process, they do not just match modeling
project monitoring with stakeholders. Basili et al. [1]

Enhance

software quality

Defect density after

6 months of release

Code

coverage

Defect density

at unit testing

Defect density at

integration testing

Found problem rate

at code review
Defect density at

system testing

Purchaser's goal

Developer’s goal

KGI

Software reliability

growth modelKPIs

Figure 4. An example of Indicator Structure Diagram.

 In Proc. of the 9th IEEE/ACIS International Conference on Computer and Information Science

(ICIS 2010), pp.723-728, August, 2010 (Yamagata, Japan)

proposed GQM approach. GQM is used to decide which
metrics should be measured. At first, a goal which is
intended to be achieved through measurement process is set,
next, questions which explain how to evaluate goal is set,
and metrics are decided based on the questions. GQM is
useful to make measurement plan, but it covers only plan
phase. Although the questions of GQM includes concept of
KGI and KPI, and the goal of GQM includes stakeholders to
some extent, it does not define them explicitly. Other GQM

approach [2] is also different from our model in the points.
Kitchenham et al. [13] proposed modeling method of

measurement, based on the model which one of the authors
proposed [14]. To enhance reliability of dataset, they focused
on data structure and storing data, and defined some
elements such as data type, range, counting rule, and so on.
Namely, their research mainly covers do phase.

ISO/IEC 15939 [11] defines the measurement
information model explained in section III. It covers do and
check phase. However, it does not include KGI, KPI, and
stakeholder’s goal, and hence it does not cover plan phase.
Additionally, ISO/IEC 15939 defines measurement process
based on plan-do-check-act cycle, and mentioned act phase.
However, ISO/IEC 15939 does not define elements for act
phase, and therefore the measurement information model
does not include them.

Chirinos et al. [4] proposed the model for software
measurement (MOSME) which covers plan phase, do phase
and check phase. The model has elements which explain
collecting and interpreting data in detail. García et al. [8]
proposed software measuring modeling language (SMML),
based on researches which some of the authors worked on
[7][9]. It includes elements which are used for plan, do, and
check phase. But these models do not include elements like
KGI, KPI, stakeholder’s goal or collective action. Hence,
these models do not fit well for modeling project monitoring
with stakeholders. Other models [15][16] are also different
from our model in the points.

The KGI and the KPI are also used by the control
objectives for information and related technology (COBIT)

After 6 months
of release

of defects

after release
(Occasional)

Code coverage
(Occasional) # of problems

at code review
(Occasional)

Test Phase

Unit testing
Integration

testing

System

testing

Code

review

Program size (Daily), # of defects (Occasional)

Found problem

rate at code
review Defect

density after
release

T
im

in
g

 o
f

d
a

ta

c
o

ll
e

c
ti
o

n

D
e

v
e

lo
p

e
r’

s

c
h

e
c
k
 t
im

in
g Code

coverage

P
u

rc
h

a
s
e

r’
s

c
h

e
c
k
 t
im

in
g

Defect density

at unit testing

Defect density
at integration

testing

Software

reliability
growth model

Defect density at

system testing

(Same as above)

Figure 5. An example of Monitoring Activity Diagram.

TABLE I. AN EXAMPLE OF INDICATOR DESCRIPTION CHART.

KGI/KPI Base measure Measurement method
Measurement

function
Analysis

model
Decision criteria Corrective action

Defect density after
6 months of release

Number of
defects
after release

Collect defects from a
bug tracking system Number of defects

after release /
program size

Not
applicable

When the value is lower than the target value
which is decided by a developer and a
purchaser, the developer’s goal and the
purchaser’s goal are regarded to be attained.

Not applicable

Program size
Measure program size
by a program size
measurement tool

Found problem rate
at code review

Number of
found
problem

Collect found problems
at code review Number of found

problem / program
size

Not
applicable

Compare the value between modules. When the
value of a module is too low, code review of it
is suspected of insufficiency.

Code review of the module is
conducted again.

Program size
Measure program size
by a program size
measurement tool

Code coverage
Code
coverage

Measure C0 coverage by
a code coverage
measurement tool

Not applicable
Not
applicable

When the value of a module is lower than
100%, testing of the module is suspected of
insufficiency.

The module is tested again.

Defect density at
unit testing

Number of
defects

Collect defects at unit
testing

Number of defects
at unit testing /
program size

Not
applicable

Compare the value between modules.
Case1: When the value of a module is too low,
number of test cases is suspected of
insufficiency.
Case2: When the value of a module is too high,
quality of module is suspected of low.

Case1: Confirm number of test
cases of the module, and test
the module again.
Case2: Code review of the
module is conducted again.

Program size
Measure program size
by a program size
measurement tool

Defect density at
integration testing

Number of
defects

Collect defects at
integration testing from
a bug tracking system Number of defects

at integration testing
/ program size

Not
applicable

Compare the value between subsystems.
Case1: When the value of a subsystem is too
low, number of test cases is suspected of
insufficiency.
Case2: When the value of a subsystem is too
high, unit testing is suspected of insufficiency.

Case1: Confirm number of test
cases of the subsystem, and
test the subsystem again.
Case2: Unit testing of the
subsystem is conducted again. Program size

Measure program size
by a program size
measurement tool

Defect density at
integration testing

Number of
defects

Collect defects at
integration testing from
a bug tracking system Number of defects

at integration testing
/ program size

Not
applicable

Compare the value between subsystems.
Case1: When the value of a subsystem is too
low, number of test cases is suspected of
insufficiency.
Case2: When the value of a subsystem is too
high, unit testing is suspected of insufficiency.

Case1: Confirm number of test
cases of the subsystem, and
test the subsystem again.
Case2: Unit testing of the
subsystem is conducted again. Program size

Measure program size
by a program size
measurement tool

Software reliability
growth model

Number of
defects

Collect defects from a
bug tracking system

Not applicable
Apply a
SRGM

When the SRGM estimates remaining defects
as high, testing is regarded as insufficient.

Testing is proceeded until the
SRGM estimates remaining
defects as low. Defect found

time
Collect found time from
a bug tracking system

 In Proc. of the 9th IEEE/ACIS International Conference on Computer and Information Science

(ICIS 2010), pp.723-728, August, 2010 (Yamagata, Japan)

[12], which is a framework for IT governance and internal
control. Usage of them is similar to our model. KPIs are set
to activities of an organization’s lower (e.g. department) to
achieve a goal of the organization’s upper (e.g. whole
company) measured by the KGI. However, COBIT defines
process, not measurement model, so it is not applicable to
modeling project monitoring.

Table II shows whether or not our model and these
models satisfy requirements of a model for project
monitoring with stakeholders explained in section II (Similar
comparison was also done in [4] to clarify differences of past
researches). In the table, “Yes” of each cell means a model
written in the column satisfies a requirement written in the
row, and “No” means not satisfy. Except for our model, any
model does not satisfy all requirements, and especially,
requirements (R5) and (R6) are not satisfied. This means that
without our model, though combination of other models
cannot satisfy the requirements (R5) and (R6).

VI. CONCLUSIONS

We propose the model of project monitoring with
stakeholders (a purchaser and a developer, or a primary
contractor and a sub contractor). Although project
monitoring with the stakeholders is expected to suppress
project failure, there was no appropriate model to describe it.
We specify six requirements for the model, and based on the
measurement information model defined by ISO/IEC 15939,
we added stakeholder’s goal, key goal indicator (KGI), key
performance indicator (KPI), check timing, and corrective
action to the model. Our model is useful for planning project
monitoring with stakeholders more rigorously, and they can
agree the plan more smoothly. Compared to other
measurement models, our model is most fitted to project
monitoring with stakeholders. Application of the model is
shown to confirm description capability of the model. Our
future work is extending notations of the model.

ACKNOWLEDGMENT

This work is being conducted as a part of the StagE
project, The Development of Next-Generation IT
Infrastructure, supported by the Ministry of Education,
Culture, Sports, Science and Technology.

REFERENCES

[1] V. Basili, and H. Rombach, “The TAME project: towards
improvement-oriented softwareenvironments,” IEEE Transactions on
Software Engineering, vol. 14, no. 6, pp. 758-773, 1988.

[2] L. Briand, S. Morasca, and V. Basili, “An Operational Process for
Goal-Driven Definition of Measures,” IEEE Transactions on
Software Engineering, vol. 28, no. 12, pp. 1106-1125, 2002.

[3] P. Chen, “The entity-relationship model - toward a unified view of
data,” ACM Transactions on Database Systems (TODS), vol. 1, no. 1,
pp. 9-36, 1976.

[4] L. Chirinos, F. Losavio, and J. Bøegh, “Characterizing a data model
for software measurement,” Journal of Systems and Software, vol. 74
no. 2, pp. 207-226, 2005.

[5] Food and Agriculture Organization of the United Nations, Food
Quality and Safety Systems: A Training Manual on Food Hygiene
and the Hazard Analysis and Critical Control Point (Haccp) System,
Food and Agriculture Organization of the United Nations, 1998.

[6] A. Fuggetta, L. Lavazza, S. Morasca, S. Cinti, G. Oldano, and E.
Orazi, “Applying GQM in an industrial software factory,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
Vol. 7, No. 4 , pp. 411-448, 1998.

[7] F. García, M. Bertoa, C. Calero, A. Vallecillo, F. Ruiz, M. Piattini,
and M. Genero, “Towards a consistent terminology for software
measurement,” Information and Software Technology, vol. 48, no. 8,
pp. 631-644, 2006.

[8] F. García, F. Ruiz, C. Calero, M. Bertoa, A. Vallecillo, B. Mora, and
M. Piattini, “Effective use of ontologies in software measurement,”
The Knowledge Engineering Review, vol. 24 , no. 1, pp. 23-40, 2009.

[9] F. García, M. Serrano, J. Cruz-Lemus, F. Ruiz, and M. Piattini,
“Managing software process measurement: A metamodel-based
approach,” Information Sciences: an International Journal, vol. 177,
no. 12, pp. 2570-2586, 2007.

[10] K. Inoue, “Software Tag for Traceability and Transparency of
Maintenance,” Proc. IEEE International Conference on Software
Maintenance (ICSM 2008), pp. 476-477, Oct. 2008.

[11] ISO/IEC 15939, “Software Engineering - Software Measurement
Process Framework,” International Organization for Standardization,
2002.

[12] IT Governance Institute: Cobit 4.1, ISACA, 2007.

[13] B. Kitchenham, R. Hughes, and S. Linkman, “Modeling Software
Measurement Data,” IEEE Transactions on Software Engineering, vol.
27, no. 9, pp. 788-804, 2001.

[14] B. Kitchenham, S. Pfleeger, and N. Fenton, “Towards a Framework
for Software Measurement Validation,” IEEE Transactions on
Software Engineering, vol. 21, no. 12, pp. 929-944, 1995.

[15] J. Lawler, B. Kitchenham, “Measurement Modeling Technology,”
IEEE Software, vol. 20, no. 3, pp. 68-75, 2003.

[16] J. McGarry, D. Card, C. Jones, B. Layman, E. Clark, J. Dean, and
Fred Hall, “Practical Software Measurement: Objective Information
for Decision Makers,” Addison-Wesley Professional, 2001.

[17] J. Musa, A. Iannino, K. Okumoto: Software Reliability: Measurement,
Prediction, Application, Mcgraw Hill, 1989.

[18] D. Parmenter: Pareto's 80/20 Rule for Corporate Accountants, Wiley,
2007.

TABLE II. COMPARISON OF MODELS RELATED TO MEASUREMENT

PROCESS.

Requirement
Our

model

GQM
approach

[1]

Kitchenham

et al. [13]

ISO/IEC
15939

[11]

MOSME

[4]

SMML

[8]

(R1) Yes
Partially

yes
No No No No

(R2) Yes
Partially

yes
No No No No

(R3) Yes No Yes Yes Yes Yes

(R4) Yes No No Yes Yes Yes

(R5) Yes No No No No No

(R6) Yes No No No No No

